首页 > 最新文献

ACM SIGPLAN Symposium on Scala最新文献

英文 中文
Investigating scaling behaviour of monte carlo codes for dense matrix inversion 研究密集矩阵反演蒙特卡罗代码的标度行为
Pub Date : 2011-11-14 DOI: 10.1145/2133173.2133187
J. Strassburg, V. Alexandrov
With the latest developments in the area of advanced computer architectures, we are already seeing large-scale machines at petascale level and are faced with the exascale computing challenge. All these require scalability at system, algorithmic and mathematical model level. In particular, efficient scalable algorithms are required to bridge the performance gap. Being able to predict application demeanour, performance and scalability of currently used software on new supercomputers of different architectures, varying sizes, and utilising alternative ways of intercommunication, can be of great benefit for researchers as well as application developers. This paper is concerned with scaling characteristics of Monte Carlo based algorithms for matrix inversion. The algorithmic behaviour on large-scale systems will be predicted with the help of an extreme-scale high-performance computing (HPC) simulator.
随着先进计算机体系结构领域的最新发展,我们已经看到了千万亿级的大型机器,并面临着百亿亿级计算的挑战。所有这些都需要在系统、算法和数学模型层面上的可扩展性。特别是,需要有效的可扩展算法来弥合性能差距。能够预测应用程序的行为、性能和当前使用的软件在不同架构、不同尺寸的新超级计算机上的可扩展性,并利用替代的互连方式,对研究人员和应用程序开发人员都有很大的好处。本文研究了基于蒙特卡罗的矩阵反演算法的标度特性。在超大规模高性能计算(HPC)模拟器的帮助下,将预测大规模系统上的算法行为。
{"title":"Investigating scaling behaviour of monte carlo codes for dense matrix inversion","authors":"J. Strassburg, V. Alexandrov","doi":"10.1145/2133173.2133187","DOIUrl":"https://doi.org/10.1145/2133173.2133187","url":null,"abstract":"With the latest developments in the area of advanced computer architectures, we are already seeing large-scale machines at petascale level and are faced with the exascale computing challenge. All these require scalability at system, algorithmic and mathematical model level. In particular, efficient scalable algorithms are required to bridge the performance gap. Being able to predict application demeanour, performance and scalability of currently used software on new supercomputers of different architectures, varying sizes, and utilising alternative ways of intercommunication, can be of great benefit for researchers as well as application developers. This paper is concerned with scaling characteristics of Monte Carlo based algorithms for matrix inversion. The algorithmic behaviour on large-scale systems will be predicted with the help of an extreme-scale high-performance computing (HPC) simulator.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131823397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Implementing a gaussian process learning algorithm in mixed parallel environment 混合并行环境下高斯过程学习算法的实现
Pub Date : 2011-11-14 DOI: 10.1145/2133173.2133176
V. Chandola, Ranga Raju Vatsavai
In this paper, we present a scalability analysis of a parallel Gaussian process training algorithm to simultaneously analyze a massive number of time series. We study three different parallel implementations: using threads, MPI, and a hybrid implementation using threads and MPI. We compare the scalability for the multi-threaded implementation on three different hardware platforms: a Mac desktop with two quad-core Intel Xeon processors (16 virtual cores), a Linux cluster node with four quad-core 2.3 GHz AMD Opteron processors, and SGI Altix ICE 8200 cluster node with two quad-core Intel Xeon processors (16 virtual cores). We also study the scalability of the MPI based and the hybrid MPI and thread based implementations on the SGI cluster with 128 nodes (2048 cores). Experimental results show that the hybrid implementation scales better than the multi-threaded and MPI based implementations. The application of the proposed algorithm is demonstrated in analyzing massive remote sensing observation data. The hybrid implementation, using 1536 cores, can analyze a data set with over 4 million time series in nearly 5 seconds while the serial algorithm takes nearly 12 hours to process the same data set.
本文提出了一种并行高斯过程训练算法的可扩展性分析,以同时分析大量时间序列。我们研究了三种不同的并行实现:使用线程、MPI和使用线程和MPI的混合实现。我们比较了多线程实现在三种不同硬件平台上的可扩展性:带有两个四核英特尔至强处理器(16个虚拟核)的Mac桌面,带有四个四核2.3 GHz AMD Opteron处理器的Linux集群节点,以及带有两个四核英特尔至强处理器(16个虚拟核)的SGI Altix ICE 8200集群节点。我们还研究了基于MPI和基于混合MPI和线程的实现在128节点(2048核)的SGI集群上的可扩展性。实验结果表明,混合实现比基于多线程和基于MPI的实现具有更好的可扩展性。通过对海量遥感观测数据的分析,验证了该算法的应用。混合实现使用1536个内核,可以在近5秒内分析超过400万个时间序列的数据集,而串行算法需要近12个小时来处理相同的数据集。
{"title":"Implementing a gaussian process learning algorithm in mixed parallel environment","authors":"V. Chandola, Ranga Raju Vatsavai","doi":"10.1145/2133173.2133176","DOIUrl":"https://doi.org/10.1145/2133173.2133176","url":null,"abstract":"In this paper, we present a scalability analysis of a parallel Gaussian process training algorithm to simultaneously analyze a massive number of time series. We study three different parallel implementations: using threads, MPI, and a hybrid implementation using threads and MPI. We compare the scalability for the multi-threaded implementation on three different hardware platforms: a Mac desktop with two quad-core Intel Xeon processors (16 virtual cores), a Linux cluster node with four quad-core 2.3 GHz AMD Opteron processors, and SGI Altix ICE 8200 cluster node with two quad-core Intel Xeon processors (16 virtual cores). We also study the scalability of the MPI based and the hybrid MPI and thread based implementations on the SGI cluster with 128 nodes (2048 cores). Experimental results show that the hybrid implementation scales better than the multi-threaded and MPI based implementations. The application of the proposed algorithm is demonstrated in analyzing massive remote sensing observation data. The hybrid implementation, using 1536 cores, can analyze a data set with over 4 million time series in nearly 5 seconds while the serial algorithm takes nearly 12 hours to process the same data set.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133584637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
ACM SIGPLAN Symposium on Scala
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1