Pub Date : 2024-02-01DOI: 10.1016/j.catcom.2024.106882
Sethumathavan Vadivel , P. Sujita , Bappi Paul , B. Vidhya , Anju Sebastian , R. Selvarajan
Here in, we have fabricated a composite of SiC and g-C3N5 to form a noble-metal-free heterostructure as SiC/g-C3N5 for electrochemical HER activity. More than a few characterization techniques were investigated for their structural properties, such as the XRD, UV- DRS, FT-IR, FE-SEM, HR-TEM, and XPS measurements respectively. The HER reaction of SiC/g-C3N5 heterostructure with an overpotential obtained from Tafel slope of 81 mV/dec vs RHE at 10 mA/cm2 which is much better than that of the pristine SiC material. This work entitles that the effective approach for the rational design of g-C3N5-based electrocatalysts, for future developments in metal-free electrocatalysts.
在此,我们制备了 SiC 和 g-C3N5 的复合材料,形成了一种不含惰性金属的异质结构 SiC/g-C3N5,用于电化学 HER 活性。研究人员采用了多种表征技术,如 XRD、UV- DRS、FT-IR、FE-SEM、HR-TEM 和 XPS 测量等,对其结构特性进行了研究。在 10 mA/cm2 的条件下,SiC/g-C3N5 异质结构的 HER 反应的过电位为 81 mV/dec vs RHE,远高于原始 SiC 材料的过电位。这项工作为合理设计基于 g-C3N5 的电催化剂提供了有效方法,有助于未来无金属电催化剂的发展。
{"title":"Enhanced electrocatalytic HER performances of metal free SiC/g-C3N5 heterostructures","authors":"Sethumathavan Vadivel , P. Sujita , Bappi Paul , B. Vidhya , Anju Sebastian , R. Selvarajan","doi":"10.1016/j.catcom.2024.106882","DOIUrl":"10.1016/j.catcom.2024.106882","url":null,"abstract":"<div><p>Here in, we have fabricated a composite of SiC and g-C<sub>3</sub>N<sub>5</sub> to form a noble-metal-free heterostructure as SiC/g-C<sub>3</sub>N<sub>5</sub> for electrochemical HER activity. More than a few characterization techniques were investigated for their structural properties, such as the XRD, UV- DRS, FT-IR, FE-SEM, HR-TEM, and XPS measurements respectively. The HER reaction of SiC/g-C<sub>3</sub>N<sub>5</sub> heterostructure with an overpotential obtained from Tafel slope of 81 mV/dec vs RHE at 10 mA/cm<sup>2</sup> which is much better than that of the pristine SiC material. This work entitles that the effective approach for the rational design of g-C<sub>3</sub>N<sub>5</sub>-based electrocatalysts, for future developments in metal-free electrocatalysts.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000426/pdfft?md5=63ad123bfc7bd10ffd24786392bec422&pid=1-s2.0-S1566736724000426-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.catcom.2024.106873
Fatemeh Mehdipour, Tim Delrieux, Florian Maurer, J. Grunwaldt, Christoph Klahn, Roland Dittmeyer
{"title":"Opportunities and limitations of metal additive manufacturing of structured catalytic converters","authors":"Fatemeh Mehdipour, Tim Delrieux, Florian Maurer, J. Grunwaldt, Christoph Klahn, Roland Dittmeyer","doi":"10.1016/j.catcom.2024.106873","DOIUrl":"https://doi.org/10.1016/j.catcom.2024.106873","url":null,"abstract":"","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139827451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.catcom.2024.106875
Thaipparambil Aneeja, Aravind Chandravarkar, G. Anilkumar
{"title":"A tandem strategy for the synthesis of 2-Aminobenzothiazoles via manganese catalyzed C S bond formation","authors":"Thaipparambil Aneeja, Aravind Chandravarkar, G. Anilkumar","doi":"10.1016/j.catcom.2024.106875","DOIUrl":"https://doi.org/10.1016/j.catcom.2024.106875","url":null,"abstract":"","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139812479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.catcom.2024.106877
Yanli Sun, Xueliang Wang, Hooi Ling Lee
{"title":"Comprehensive investigation of solvent effects on BiOBr synthesis: Understanding the photocatalytic mechanisms of enrofloxacin and its degradation pathway","authors":"Yanli Sun, Xueliang Wang, Hooi Ling Lee","doi":"10.1016/j.catcom.2024.106877","DOIUrl":"https://doi.org/10.1016/j.catcom.2024.106877","url":null,"abstract":"","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139888790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.catcom.2024.106877
Yanli Sun , Xueliang Wang , Hooi Ling Lee
It is critical to enhance the photocatalytic performance of BiOBr through appropriate strategies. Two BiOBr samples with different water (W) and ethylene glycol (EG) solvents have been synthesized. BiOBr-EG presents a 3D nest-like morphology composed of nanoplates, prominently emphasizing (110) facets. In contrast, BiOBr-W displays 2D microplates with exposed (102) facets. Notably, BiOBr-EG exhibits a degradation rate 7.4 times faster and removal efficiency of Enrofloxacin (ENR) 2.2 times greater than that of BiOBr-W. Additional investigations reveal that ·O2− plays a dominant role in the degradation process. Finally, the degradation pathways are explored through DFT calculation and HPLC-MS methods.
{"title":"Comprehensive investigation of solvent effects on BiOBr synthesis: Understanding the photocatalytic mechanisms of enrofloxacin and its degradation pathway","authors":"Yanli Sun , Xueliang Wang , Hooi Ling Lee","doi":"10.1016/j.catcom.2024.106877","DOIUrl":"10.1016/j.catcom.2024.106877","url":null,"abstract":"<div><p>It is critical to enhance the photocatalytic performance of BiOBr through appropriate strategies. Two BiOBr samples with different water (W) and ethylene glycol (EG) solvents have been synthesized. BiOBr-EG presents a 3D nest-like morphology composed of nanoplates, prominently emphasizing (110) facets. In contrast, BiOBr-W displays 2D microplates with exposed (102) facets. Notably, BiOBr-EG exhibits a degradation rate 7.4 times faster and removal efficiency of Enrofloxacin (ENR) 2.2 times greater than that of BiOBr-W. Additional investigations reveal that ·O<sub>2</sub><sup>−</sup> plays a dominant role in the degradation process. Finally, the degradation pathways are explored through DFT calculation and HPLC-MS methods.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000372/pdfft?md5=96453a62aa83274b1caa98e3303d86e3&pid=1-s2.0-S1566736724000372-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139829064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catalytic ozonation has become one of the most promising technologies for wastewater treatment due to its high efficiency in the removal of organic pollutants. Three carbon materials (carbon nanotubes, graphene oxide and activated carbon) and five pharmaceutical compounds were selected for this study. All tested parent pollutants were easily degraded by single ozonation. In terms of mineralization, the presence of catalyst revealed to be necessary to enhance organic matter removal, and activated carbon (GAC) showing superior performance. To evaluate the effect of the water matrix, experiments were performed with ground water and wastewater and significant degradation of pollutants was achieved.
{"title":"Catalytic ozonation of pharmaceutical compounds using carbon-based catalysts","authors":"C.A. Orge , C.A.L. Graça , J. Restivo , M.F.R. Pereira , O.S.G.P. Soares","doi":"10.1016/j.catcom.2024.106863","DOIUrl":"10.1016/j.catcom.2024.106863","url":null,"abstract":"<div><p>Catalytic ozonation has become one of the most promising technologies for wastewater treatment due to its high efficiency in the removal of organic pollutants. Three carbon materials (carbon nanotubes, graphene oxide and activated carbon) and five pharmaceutical compounds were selected for this study. All tested parent pollutants were easily degraded by single ozonation. In terms of mineralization, the presence of catalyst revealed to be necessary to enhance organic matter removal, and activated carbon (GAC) showing superior performance. To evaluate the effect of the water matrix, experiments were performed with ground water and wastewater and significant degradation of pollutants was achieved.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000232/pdfft?md5=a1c1b0bbd0d3eb4d9afa5ae4e79194a6&pid=1-s2.0-S1566736724000232-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139874424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.catcom.2024.106887
Ruijie Zhang, Haibo Jin, Lei Ma, Suohe Yang, Guangxiang He
1,4-cyclohexanedimethanol (CHDM) is used as a high-value polyester monomer. On the basis of the catalysts of RuSn and Pd, the compound catalysts of RuSn and PdCe are prepared by adding the additive Ce to the Pd-based catalyst. The results showed that the yield of CHDM increased by 13.4% after the addition of Ce, indicating that Ce is conducive to the activation of HH and CO thus promoting the hydrogenation of carboxyl groups. Furthermore, the addition of Ce effectively slows down the coverage of the compound on the active component Pd, prolonging the lifespan of the catalyst.
{"title":"Synergistic catalytic performance of RuSn and PdCe composite catalysts for the hydrogenation of Terephthalic acid to 1,4-Cyclohexanedimethanol","authors":"Ruijie Zhang, Haibo Jin, Lei Ma, Suohe Yang, Guangxiang He","doi":"10.1016/j.catcom.2024.106887","DOIUrl":"10.1016/j.catcom.2024.106887","url":null,"abstract":"<div><p>1,4-cyclohexanedimethanol (CHDM) is used as a high-value polyester monomer. On the basis of the catalysts of Ru<img>Sn and Pd, the compound catalysts of Ru<img>Sn and Pd<img>Ce are prepared by adding the additive Ce to the Pd-based catalyst. The results showed that the yield of CHDM increased by 13.4% after the addition of Ce, indicating that Ce is conducive to the activation of H<img>H and C<img>O thus promoting the hydrogenation of carboxyl groups. Furthermore, the addition of Ce effectively slows down the coverage of the compound on the active component Pd, prolonging the lifespan of the catalyst.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000475/pdfft?md5=43259a90b0b5c6e2502da697f4ff0cf8&pid=1-s2.0-S1566736724000475-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.catcom.2024.106893
Li-Heng Kao , Jun-Jie Liu , To-Yu Wang , Duo-Syuan Lin , Ying-Shuo Cheng , Chia-Hao Tseng , Kanit Manatura , Wei-Yu Chen , Kun-Yi Andrew Lin , Chao-Wei Huang
In this study, Fe2O3/C3N4/NH2-MIL-125 ternary composite photocatalysts were synthesized. Their amino groups provided close bonding between these materials, facilitating the effective separation of electrons and holes. Besides, each component of Fe2O3/C3N4/NH2-MIL-125 plays a crucial role. NH2-MIL-125 provided a high surface area, C3N4 contributed to the primary photocatalytic activity, and Fe2O3 aided in enhancing light absorption, generating additional potential to produce hydroxyl radicals, thereby further enhancing photocatalytic activity. Moreover, the proportion of loaded Fe2O3 and C3N4 in the ternary material was investigated. It was found that Fe2O3/C3N4/NH2-MIL-125 with a 1:1 ratio of Fe2O3 and C3N4 (FeCN1:1/NM125) exhibited excellent photocatalytic performance, in which RhB degradation reached 100% under visible light irradiation, conforming to first-order kinetics analysis with a reaction rate constant k of 0.0164 min−1. Its efficiency was twice that of the binary catalyst C3N4/NH2-MIL-125 or Fe2O3/NH2-MIL-125, seven times that of the pristine catalyst C3N4, and ten times that of the pristine catalyst NH2-MIL-125. Scavenger experiments showed that the degradation efficiencies were 52.57%, 55.51%, and 63.41%, respectively, indicating that three active species, namely superoxide radicals, holes, and hydroxyl radicals, made significant contributions to photocatalysis.
{"title":"Synergistic enhancement of visible light Photocatalysis: Tailoring dual Z-scheme Fe2O3/C3N4/NH2-MIL-125 ternary composites for organic pollutant degradation","authors":"Li-Heng Kao , Jun-Jie Liu , To-Yu Wang , Duo-Syuan Lin , Ying-Shuo Cheng , Chia-Hao Tseng , Kanit Manatura , Wei-Yu Chen , Kun-Yi Andrew Lin , Chao-Wei Huang","doi":"10.1016/j.catcom.2024.106893","DOIUrl":"10.1016/j.catcom.2024.106893","url":null,"abstract":"<div><p>In this study, Fe<sub>2</sub>O<sub>3</sub>/C<sub>3</sub>N<sub>4</sub>/NH<sub>2</sub>-MIL-125 ternary composite photocatalysts were synthesized. Their amino groups provided close bonding between these materials, facilitating the effective separation of electrons and holes. Besides, each component of Fe<sub>2</sub>O<sub>3</sub>/C<sub>3</sub>N<sub>4</sub>/NH<sub>2</sub>-MIL-125 plays a crucial role. NH<sub>2</sub>-MIL-125 provided a high surface area, C<sub>3</sub>N<sub>4</sub> contributed to the primary photocatalytic activity, and Fe<sub>2</sub>O<sub>3</sub> aided in enhancing light absorption, generating additional potential to produce hydroxyl radicals, thereby further enhancing photocatalytic activity. Moreover, the proportion of loaded Fe<sub>2</sub>O<sub>3</sub> and C<sub>3</sub>N<sub>4</sub> in the ternary material was investigated. It was found that Fe<sub>2</sub>O<sub>3</sub>/C<sub>3</sub>N<sub>4</sub>/NH<sub>2</sub>-MIL-125 with a 1:1 ratio of Fe<sub>2</sub>O<sub>3</sub> and C<sub>3</sub>N<sub>4</sub> (FeCN1:1/NM125) exhibited excellent photocatalytic performance, in which RhB degradation reached 100% under visible light irradiation, conforming to first-order kinetics analysis with a reaction rate constant k of 0.0164 min<sup>−1</sup>. Its efficiency was twice that of the binary catalyst C<sub>3</sub>N<sub>4</sub>/NH<sub>2</sub>-MIL-125 or Fe<sub>2</sub>O<sub>3</sub>/NH<sub>2</sub>-MIL-125, seven times that of the pristine catalyst C<sub>3</sub>N<sub>4</sub>, and ten times that of the pristine catalyst NH<sub>2</sub>-MIL-125. Scavenger experiments showed that the degradation efficiencies were 52.57%, 55.51%, and 63.41%, respectively, indicating that three active species, namely superoxide radicals, holes, and hydroxyl radicals, made significant contributions to photocatalysis.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000530/pdfft?md5=88a7045d6c20ae52271cd0fd7a71553a&pid=1-s2.0-S1566736724000530-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}