Hydrogen and oxygen production from electrocatalytic water splitting offers a sustainable strategy towards achieving renewable energy. However, sluggish kinetics of the reaction require expensive platinum (Pt) and ruthenium dioxide (RuO2)/ iridium dioxide (IrO2)-based electrocatalysts where the high cost of the catalyst hinders the practical use of water splitting reaction. Two-dimensional mixed metal metal-organic frameworks (2D MM-MOFs) have emerged as alternative promising electrocatalysts. In MM-MOFs, the metal centers play a crucial role in determining the catalytic activity. Among several MM-MOFs explored for water splitting reaction, Co(II) and Ni(II)-based MM-MOFs have shown a significant potential, rendering them as promising materials for efficient and sustainable electrochemical energy conversion and storage technologies. Herein, we highlight recent advancements in the development of Ni(II) and Co(II)-based 2D MM-MOFs, emphasizing their outstanding electrocatalytic performance for hydrogen evolution reaction and oxygen evolution reaction. Strategies for the effective design and development of electrocatalysts along with the challenges are also discussed.
{"title":"Nickel (II) and Cobalt (II) Based 2D mixed metal-metal organic frameworks (MM-MOFs) for electrocatalytic water splitting reactions","authors":"Janak, Ritika Jaryal, Sakshi, Rakesh Kumar, Sadhika Khullar","doi":"10.1016/j.cattod.2024.115117","DOIUrl":"10.1016/j.cattod.2024.115117","url":null,"abstract":"<div><div>Hydrogen and oxygen production from electrocatalytic water splitting offers a sustainable strategy towards achieving renewable energy. However, sluggish kinetics of the reaction require expensive platinum (Pt) and ruthenium dioxide (RuO<sub>2</sub>)/ iridium dioxide (IrO<sub>2</sub>)-based electrocatalysts where the high cost of the catalyst hinders the practical use of water splitting reaction. Two-dimensional mixed metal metal-organic frameworks (2D MM-MOFs) have emerged as alternative promising electrocatalysts. In MM-MOFs, the metal centers play a crucial role in determining the catalytic activity. Among several MM-MOFs explored for water splitting reaction, Co(II) and Ni(II)-based MM-MOFs have shown a significant potential, rendering them as promising materials for efficient and sustainable electrochemical energy conversion and storage technologies. Herein, we highlight recent advancements in the development of Ni(II) and Co(II)-based 2D MM-MOFs, emphasizing their outstanding electrocatalytic performance for hydrogen evolution reaction and oxygen evolution reaction. Strategies for the effective design and development of electrocatalysts along with the challenges are also discussed.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115117"},"PeriodicalIF":5.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.cattod.2024.115116
A. Dhariwal , D. Banerjee , N. Sen , N. Chakraborty , K.K. Chattopadhyay
The present work reports the development of molybdenum disulfide (MoS2) wrapped zinc oxide nano-rods through an in-situ hydrothermal approach at a moderate temperature of 200 °C. The as-developed samples were characterized by different sophisticate techniques like X-ray diffraction (XRD), Field emission scanning electron microscopes (FESEM), Fourier Transformed Infrared (FTIR), UV-Visible (UV-Vis) and photoluminescence (PL) spectroscopy. The composition analysis was done with the help of energy-dispersive x-ray (EDX) and stability of the sample against elevated temperature was estimated with the help of thermo gravimetric as well as differential thermal analysis (TG-DTA). XRD shows that the crystallinity of MoS2 was not very high whereas pure ZnO shows well-crystalline features. FESEM micrographs confirmed growth of fractal nature of MoS2 over ZnO rods. FTIR showed the different bond present in the material whereas UV-Vis spectra aided to have ideas about the band gap of all the samples. PL study shows that ZnO gives the most intense luminescence signal carrying the signature of both band to band and defect induced transition. In case of hybrid sample the emission wavelength gets shifted from dark blue to cyan region. It has been shown that the MoS2 has excellent efficacy in removing different textile dyes like Bengal rose, malachite green, methyl orange or rhodamine B and thus when it is combined with ZnO the removal efficiency of the ZnO increases significantly. It has also been shown that for pure MoS2 adsorption is the key mechanism of the dye removal whereas for pure ZnO photo-catalysis is the major contribution for the removal. In case of the hybrid sample, thus synergistic effect of the two processes gives the best result and in most of the cases over 90 % removal was achieved within 15 minutes only. Efforts have been given to explain the result in terms of dye structure and its interaction, surface area as optical band gap of the sample.
本研究报告介绍了在 200 °C 的适度温度下,通过原位水热法开发二硫化钼(MoS2)包裹氧化锌纳米棒的情况。通过不同的先进技术,如 X 射线衍射 (XRD)、场发射扫描电子显微镜 (FESEM)、傅立叶变换红外光谱 (FTIR)、紫外可见光 (UV-Vis) 和光致发光 (PL) 光谱,对开发的样品进行了表征。利用能量色散 X 射线(EDX)进行了成分分析,并利用热重分析和差热分析(TG-DTA)估计了样品在高温下的稳定性。XRD 显示,MoS2 的结晶度不高,而纯 ZnO 则显示出良好的结晶特征。FESEM 显微照片证实了 MoS2 在 ZnO 棒上的分形生长。傅立叶变换红外光谱显示了材料中存在的不同键,而紫外可见光谱则有助于了解所有样品的带隙。PL 研究表明,氧化锌发出的发光信号最强烈,同时带有带间转变和缺陷诱导转变的特征。混合样品的发射波长从深蓝色转移到了青色区域。研究表明,MoS2 在去除孟加拉玫瑰红、孔雀石绿、甲基橙或罗丹明 B 等不同纺织染料方面具有出色的功效,因此当它与氧化锌结合时,氧化锌的去除效率会显著提高。研究还表明,对于纯 MoS2 来说,吸附是去除染料的关键机制,而对于纯 ZnO 来说,光催化是去除染料的主要原因。在混合样品中,两个过程的协同效应产生了最佳效果,在大多数情况下,仅在 15 分钟内就能达到 90% 以上的去除率。我们努力从染料结构及其相互作用、样品的表面积和光带隙等方面来解释这一结果。
{"title":"Synergistic effect of adsorption and photo-catalysis in removal of various textile dyes: Excellent efficacy of molybdenum disulfide-zinc oxide hybrids","authors":"A. Dhariwal , D. Banerjee , N. Sen , N. Chakraborty , K.K. Chattopadhyay","doi":"10.1016/j.cattod.2024.115116","DOIUrl":"10.1016/j.cattod.2024.115116","url":null,"abstract":"<div><div>The present work reports the development of molybdenum disulfide (MoS<sub>2</sub>) wrapped zinc oxide nano-rods through an in-situ hydrothermal approach at a moderate temperature of 200 °C. The as-developed samples were characterized by different sophisticate techniques like X-ray diffraction (XRD), Field emission scanning electron microscopes (FESEM), Fourier Transformed Infrared (FTIR), UV-Visible (UV-Vis) and photoluminescence (PL) spectroscopy. The composition analysis was done with the help of energy-dispersive x-ray (EDX) and stability of the sample against elevated temperature was estimated with the help of thermo gravimetric as well as differential thermal analysis (TG-DTA). XRD shows that the crystallinity of MoS<sub>2</sub> was not very high whereas pure ZnO shows well-crystalline features. FESEM micrographs confirmed growth of fractal nature of MoS<sub>2</sub> over ZnO rods. FTIR showed the different bond present in the material whereas UV-Vis spectra aided to have ideas about the band gap of all the samples. PL study shows that ZnO gives the most intense luminescence signal carrying the signature of both band to band and defect induced transition. In case of hybrid sample the emission wavelength gets shifted from dark blue to cyan region. It has been shown that the MoS<sub>2</sub> has excellent efficacy in removing different textile dyes like Bengal rose, malachite green, methyl orange or rhodamine B and thus when it is combined with ZnO the removal efficiency of the ZnO increases significantly. It has also been shown that for pure MoS<sub>2</sub> adsorption is the key mechanism of the dye removal whereas for pure ZnO photo-catalysis is the major contribution for the removal. In case of the hybrid sample, thus synergistic effect of the two processes gives the best result and in most of the cases over 90 % removal was achieved within 15 minutes only. Efforts have been given to explain the result in terms of dye structure and its interaction, surface area as optical band gap of the sample.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115116"},"PeriodicalIF":5.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.cattod.2024.115119
Jéssica Caroline Freitas Cavalcante, André Miranda da Silva, Paula Mikaelly Batista Caldas, Bianca Viana de Sousa Barbosa, Heleno Bispo da Silva Júnior, José Jailson Nicácio Alves
Different types of heterogeneous catalysts have been developed worldwide and tested for biodiesel production from corn oil as a feedstock via the transesterification and esterification reactions. In this study, varying contents of MoO3 were incorporated into the mesoporous molecular sieve MCM-41 using the pore saturation method to form heterogeneous catalysts (MoO3/MCM-41). Characterization results confirmed the formation of the MCM-41 structure and the mesoporous phase filling by molybdenum, along with different surface areas, volume, and pore diameters. The silanol groups impart acidity to the molecular sieve, and a molybdenum content above the optimum reduced the availability of acidic sites on the catalyst surface, filling the micro and mesoporous channels, resulting in lower acidity. Catalytic performance was evaluated using a 22 factorial design with three center points to optimize reaction parameters including MoO3content and temperature. The maximum yield was 87.87 %, achieved with a 3 % catalyst load containing 15 wt% MoO3, at an oil-to-alcohol molar ratio of 1:20 at 150 °C for 3 h. Temperature had the most significant influence on biodiesel yield.
{"title":"Characterization and optimization of biodiesel production from corn oil using heterogeneous MoO3/MCM-41 catalysts","authors":"Jéssica Caroline Freitas Cavalcante, André Miranda da Silva, Paula Mikaelly Batista Caldas, Bianca Viana de Sousa Barbosa, Heleno Bispo da Silva Júnior, José Jailson Nicácio Alves","doi":"10.1016/j.cattod.2024.115119","DOIUrl":"10.1016/j.cattod.2024.115119","url":null,"abstract":"<div><div>Different types of heterogeneous catalysts have been developed worldwide and tested for biodiesel production from corn oil as a feedstock via the transesterification and esterification reactions. In this study, varying contents of MoO<sub>3</sub> were incorporated into the mesoporous molecular sieve MCM-41 using the pore saturation method to form heterogeneous catalysts (MoO<sub>3</sub>/MCM-41). Characterization results confirmed the formation of the MCM-41 structure and the mesoporous phase filling by molybdenum, along with different surface areas, volume, and pore diameters. The silanol groups impart acidity to the molecular sieve, and a molybdenum content above the optimum reduced the availability of acidic sites on the catalyst surface, filling the micro and mesoporous channels, resulting in lower acidity. Catalytic performance was evaluated using a 2<sup>2</sup> factorial design with three center points to optimize reaction parameters including MoO<sub>3</sub>content and temperature. The maximum yield was 87.87 %, achieved with a 3 % catalyst load containing 15 wt% MoO<sub>3</sub>, at an oil-to-alcohol molar ratio of 1:20 at 150 °C for 3 h. Temperature had the most significant influence on biodiesel yield.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115119"},"PeriodicalIF":5.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.cattod.2024.115111
Nadiia Huskova, Yuliia Dikova, Taras Petrenko, Thomas Bönisch
The goal of the NFDI4Cat project is to establish a National Research Data Infrastructure for catalysis research in Germany that ensures the data and metadata collected and shared by researchers are of high quality and adhere to established standards. To achieve this goal, a comprehensive use case (UC) collection methodology has been developed. The methodology is based on the collection and analysis of use cases for research workflows and data therein provided by the researchers working in the field of catalysis. The proposed methodology includes detailed guidelines for the information collected within a particular UC, ensuring that it is relevant, accurate and complete. The collected UC data are then evaluated based on established criteria for data and metadata quality. Any identified issues are addressed through the collaboration with the respective researchers, to ensure that the use cases meet the required standards. The collected use cases are then standardized, which in particular includes mapping the data and metadata to relevant ontologies and vocabularies, as well as ensuring consistency across different use cases. The standardization process is coupled with a semantic representation of metadata within the Resource Description Framework (RDF) followed by appropriate extension of the ontology being developed. The semantic framework allows for easy integration and cross-referencing of data. It ensures that the data are machine-readable, linked, and can be easily integrated with other datasets, making it more discoverable and useful for the catalysis research community. Within the project, special attention is paid on the collection of UCs from different fields, including biocatalysis, homogeneous catalysis, and heterogeneous catalysis. This will provide a comprehensive representation of the metadata related to catalysis. The proposed methodology serves as a valuable resource for the catalysis research community, promoting adherence to established standards and ensuring that the data and metadata shared by researchers are of high quality.
{"title":"Improvement of data and metadata quality in catalysis research: A use case-driven methodology","authors":"Nadiia Huskova, Yuliia Dikova, Taras Petrenko, Thomas Bönisch","doi":"10.1016/j.cattod.2024.115111","DOIUrl":"10.1016/j.cattod.2024.115111","url":null,"abstract":"<div><div>The goal of the NFDI4Cat project is to establish a National Research Data Infrastructure for catalysis research in Germany that ensures the data and metadata collected and shared by researchers are of high quality and adhere to established standards. To achieve this goal, a comprehensive use case (UC) collection methodology has been developed. The methodology is based on the collection and analysis of use cases for research workflows and data therein provided by the researchers working in the field of catalysis. The proposed methodology includes detailed guidelines for the information collected within a particular UC, ensuring that it is relevant, accurate and complete. The collected UC data are then evaluated based on established criteria for data and metadata quality. Any identified issues are addressed through the collaboration with the respective researchers, to ensure that the use cases meet the required standards. The collected use cases are then standardized, which in particular includes mapping the data and metadata to relevant ontologies and vocabularies, as well as ensuring consistency across different use cases. The standardization process is coupled with a semantic representation of metadata within the Resource Description Framework (RDF) followed by appropriate extension of the ontology being developed. The semantic framework allows for easy integration and cross-referencing of data. It ensures that the data are machine-readable, linked, and can be easily integrated with other datasets, making it more discoverable and useful for the catalysis research community. Within the project, special attention is paid on the collection of UCs from different fields, including biocatalysis, homogeneous catalysis, and heterogeneous catalysis. This will provide a comprehensive representation of the metadata related to catalysis. The proposed methodology serves as a valuable resource for the catalysis research community, promoting adherence to established standards and ensuring that the data and metadata shared by researchers are of high quality.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115111"},"PeriodicalIF":5.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.cattod.2024.115113
Wei Lv , Yao Wang , Hong Chen , Yongqi Tang , Yongdan Li
Nitrogen atom-doped biomass carbon prepared from corn stover is a newly discovered metal-free catalyst that shows good activity on the selective oxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-diformylfuran (DFF). Here, the presence of graphitic nitrogen on the catalyst surface activated the oxygen adsorbed on the carbon sites next to the graphitic nitrogen in the carbon material and promoted the formation of oxygen radicals on the surface-active sites, improving the HMF oxidation process. The results show that the catalyst NC-800 reacted with acetonitrile as the reaction solvent at 110 °C and 1.0 MPa O2 for 8 h to obtain 93.0 % HMF conversion and 94.4 % DFF selectivity, and the 5-HMF conversion and DFF selectivity were maintained at more than 85 % after five cyclic tests, with excellent cyclic stability. One of the main factors influencing the material flaws is the variation in pyrolysis temperature. Using maize stover, a readily available and renewable biomass, in the catalytic oxidation of biomass platform compounds may improve biomass utilization more extensively.
{"title":"The application of graphitic nitrogen from corn stover for the selective catalytic oxidation of 5-hydroxymethyl furfural","authors":"Wei Lv , Yao Wang , Hong Chen , Yongqi Tang , Yongdan Li","doi":"10.1016/j.cattod.2024.115113","DOIUrl":"10.1016/j.cattod.2024.115113","url":null,"abstract":"<div><div>Nitrogen atom-doped biomass carbon prepared from corn stover is a newly discovered metal-free catalyst that shows good activity on the selective oxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-diformylfuran (DFF). Here, the presence of graphitic nitrogen on the catalyst surface activated the oxygen adsorbed on the carbon sites next to the graphitic nitrogen in the carbon material and promoted the formation of oxygen radicals on the surface-active sites, improving the HMF oxidation process. The results show that the catalyst NC-800 reacted with acetonitrile as the reaction solvent at 110 °C and 1.0 MPa O<sub>2</sub> for 8 h to obtain 93.0 % HMF conversion and 94.4 % DFF selectivity, and the 5-HMF conversion and DFF selectivity were maintained at more than 85 % after five cyclic tests, with excellent cyclic stability. One of the main factors influencing the material flaws is the variation in pyrolysis temperature. Using maize stover, a readily available and renewable biomass, in the catalytic oxidation of biomass platform compounds may improve biomass utilization more extensively.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115113"},"PeriodicalIF":5.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.cattod.2024.115112
Lianghuan Wei , Ning Lin , Jixiang Cai , Fang Huang , Zejun Liu , Hengli Qian , Chao Xie , Weizun Li , Meiting Ju , Qidong Hou
The production of methane-enriched gas via thermo-chemical process is an important approach for biomass valorization. However, current pyrolysis processes generally give low yield of value-added gas product. Herein, a series of Ni-based materials with hydroxyapatite (HAP) and titanium silicate (TS) as supports were prepared and investigated as catalysts to boost CH4 production from pyrolysis-steam reforming of corn stalk. The surface element composition, chemical state and crystal structure of materials were characterized by transmission electron microscope (TEM), N2 adsorption-desorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The expected loading of Ni, La and Ce were successfully loaded onto HAP via simple impregnation method, while the loading of active metals on TS is finite. Ni-5La2O3/HAP exhibited the best catalytic activity for pyrolysis-steam reforming of corn stalk, attaining CH4 yield (19.41 mmol/g) that is 89.9 % and 46.2 % higher than control experiment and Ni-5CeO2/MCM-41, indicating that loading high-density Ni and La species onto HAP supports can greatly boost the CH4 formation. However, the catalysts lost activity obviously during recycling experiment probably due to carbon accumulation.
通过热化学工艺生产富含甲烷的气体是生物质增值的重要方法。然而,目前的热解工艺一般产生的高附加值气体产品产量较低。本文制备了一系列以羟基磷灰石(HAP)和硅酸钛(TS)为载体的镍基材料,并将其作为催化剂进行了研究,以提高玉米秸秆热解-蒸汽转化过程中的甲烷产量。通过透射电子显微镜(TEM)、N2 吸附-解吸、X 射线衍射(XRD)和 X 射线光电子能谱(XPS)分析对材料的表面元素组成、化学状态和晶体结构进行了表征。通过简单的浸渍法,镍、镧和铈的预期负载成功地负载到了 HAP 上,而活性金属在 TS 上的负载是有限的。Ni-5La2O3/HAP 在玉米秸秆热解-蒸汽转化过程中表现出最好的催化活性,CH4 产率(19.41 mmol/g)比对照实验和 Ni-5CeO2/MCM-41 分别高出 89.9% 和 46.2%,这表明在 HAP 载体上负载高密度的 Ni 和 La 物种能极大地促进 CH4 的生成。然而,可能由于积碳的原因,催化剂在循环实验过程中活性明显下降。
{"title":"Hydroxyapatite supported Ni and La2O3 boost methane-enriched gas production from pyrolysis-steam reforming of corn stalk","authors":"Lianghuan Wei , Ning Lin , Jixiang Cai , Fang Huang , Zejun Liu , Hengli Qian , Chao Xie , Weizun Li , Meiting Ju , Qidong Hou","doi":"10.1016/j.cattod.2024.115112","DOIUrl":"10.1016/j.cattod.2024.115112","url":null,"abstract":"<div><div>The production of methane-enriched gas via thermo-chemical process is an important approach for biomass valorization. However, current pyrolysis processes generally give low yield of value-added gas product. Herein, a series of Ni-based materials with hydroxyapatite (HAP) and titanium silicate (TS) as supports were prepared and investigated as catalysts to boost CH<sub>4</sub> production from pyrolysis-steam reforming of corn stalk. The surface element composition, chemical state and crystal structure of materials were characterized by transmission electron microscope (TEM), N<sub>2</sub> adsorption-desorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The expected loading of Ni, La and Ce were successfully loaded onto HAP via simple impregnation method, while the loading of active metals on TS is finite. Ni-5La<sub>2</sub>O<sub>3</sub>/HAP exhibited the best catalytic activity for pyrolysis-steam reforming of corn stalk, attaining CH<sub>4</sub> yield (19.41 mmol/g) that is 89.9 % and 46.2 % higher than control experiment and Ni-5CeO<sub>2</sub>/MCM-41, indicating that loading high-density Ni and La species onto HAP supports can greatly boost the CH<sub>4</sub> formation. However, the catalysts lost activity obviously during recycling experiment probably due to carbon accumulation.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115112"},"PeriodicalIF":5.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.cattod.2024.115109
Kelvin A. Sanoja-López, Dayanara D. Salinas-Echeverría, Rafael Luque
This study focuses on the tandem multi-step valorization of 5-hydroxymethylfurfural (HMF) to valuable furanic derivatives using a catalytic process with 10 % Pd/C in continuous flow under mild operating conditions. The results demonstrate the selective conversion of 5-HMF to furfuryl alcohol with yields exceeding 99 % under mild conditions and short times of reaction, subsequently followed by the conversion of furfuryl alcohol to valuable products (imines) via oxidative coupling. This continuous flow approach offers several advantages over batch methods, including the ability to achieve high yields with precise control of parameters such as temperature, pressure, and flow rate, thereby facilitating process optimization and scalability.
{"title":"Continuous Flow valorization of furanics: From decarbonylation of 5-Hydroxymethyl-furfural to furfuryl alcohol conversion into valuable oxidative coupling products","authors":"Kelvin A. Sanoja-López, Dayanara D. Salinas-Echeverría, Rafael Luque","doi":"10.1016/j.cattod.2024.115109","DOIUrl":"10.1016/j.cattod.2024.115109","url":null,"abstract":"<div><div>This study focuses on the tandem multi-step valorization of 5-hydroxymethylfurfural (HMF) to valuable furanic derivatives using a catalytic process with 10 % Pd/C in continuous flow under mild operating conditions. The results demonstrate the selective conversion of 5-HMF to furfuryl alcohol with yields exceeding 99 % under mild conditions and short times of reaction, subsequently followed by the conversion of furfuryl alcohol to valuable products (imines) via oxidative coupling. This continuous flow approach offers several advantages over batch methods, including the ability to achieve high yields with precise control of parameters such as temperature, pressure, and flow rate, thereby facilitating process optimization and scalability.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115109"},"PeriodicalIF":5.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.cattod.2024.115105
Sneha R. Shetty , Ganapati D. Yadav
Hydrogenation of xylose to xylitol is commercially attractive. The use of water as well as aqueous isopropanol as solvent using a novel robust catalyst was targeted in this work. This work showed that a nickel-alumina catalyst supported on hexagonal mesoporous silica (HMS) can effectively transform lignocellulose-derived xylose fraction to the value-added product, xylitol. HMS support was modified by simultaneous impregnating nickel (6 wt%) and alumina (4 wt%) which was subsequently oxidized. The catalyst was evaluated for its hydrogenation ability of xylose to xylitol. Identical reactions were carried out with HMS, alumina, Al/HMS and Ni/HMS to ascertain the activity of each moiety in the reaction. Before the reaction, the catalyst was reduced in a tubular reactor in the presence of hydrogen. Reaction parameters such as speed of agitation, type of precursor, metal loading, catalyst loading, solvent, concentration and temperature were studied and optimized. At 130℃ and 20 bar H2, initial xylose concentration of 0.2 mmol/mL with water: isopropanol (1:1 v/v) mixture as solvent, conversion of xylose was found to be 98 % with a selectivity of 97 % towards xylitol. Comparison was also made with water alone as a solvent. A kinetic study of the reaction was performed. The transformation of xylose to xylitol using this novel catalyst is a green process since it entails substantially lower metal loading when compared to the conventional Raney nickel catalysts, it does not involve the use of noble metals such as Pt, Pd, Rh or Ru, and also does not suffer from the problem of metal leaching, making it superior to those catalysts reported yet.
将木糖加氢转化为木糖醇具有商业吸引力。本研究以水和异丙醇水溶液为溶剂,并使用新型强效催化剂为目标。这项研究表明,六方介孔二氧化硅(HMS)支撑的镍-氧化铝催化剂可以有效地将木质纤维素衍生的木糖部分转化为高附加值产品木糖醇。通过同时浸渍镍(6 wt%)和氧化铝(4 wt%)对 HMS 载体进行改性,然后对其进行氧化。对该催化剂将木糖氢化为木糖醇的能力进行了评估。用 HMS、氧化铝、Al/HMS 和 Ni/HMS 进行了相同的反应,以确定每个分子在反应中的活性。反应前,催化剂在有氢气存在的管式反应器中进行还原。对搅拌速度、前驱体类型、金属负载、催化剂负载、溶剂、浓度和温度等反应参数进行了研究和优化。在 130℃ 和 20 bar H2 条件下,以水:异丙醇(1:1 v/v)混合物为溶剂,木糖初始浓度为 0.2 mmol/mL,木糖转化率为 98%,对木糖醇的选择性为 97%。此外,还与单独用水作为溶剂进行了比较。对反应进行了动力学研究。使用这种新型催化剂将木糖转化为木糖醇是一种绿色工艺,因为与传统的雷尼镍催化剂相比,这种催化剂的金属负载量要低得多,而且不需要使用铂、钯、铑或钌等贵金属,也没有金属浸出的问题,因此比目前报道的催化剂更为优越。
{"title":"Sustainable hydrogenation of xylose to xylitol using nickel-alumina catalysts supported on hexagonal mesoporous silica in water vis-à-vis aqueous isopropanol as solvent","authors":"Sneha R. Shetty , Ganapati D. Yadav","doi":"10.1016/j.cattod.2024.115105","DOIUrl":"10.1016/j.cattod.2024.115105","url":null,"abstract":"<div><div>Hydrogenation of xylose to xylitol is commercially attractive. The use of water as well as aqueous isopropanol as solvent using a novel robust catalyst was targeted in this work. This work showed that a nickel-alumina catalyst supported on hexagonal mesoporous silica (HMS) can effectively transform lignocellulose-derived xylose fraction to the value-added product, xylitol. HMS support was modified by simultaneous impregnating nickel (6 wt%) and alumina (4 wt%) which was subsequently oxidized. The catalyst was evaluated for its hydrogenation ability of xylose to xylitol. Identical reactions were carried out with HMS, alumina, Al/HMS and Ni/HMS to ascertain the activity of each moiety in the reaction. Before the reaction, the catalyst was reduced in a tubular reactor in the presence of hydrogen. Reaction parameters such as speed of agitation, type of precursor, metal loading, catalyst loading, solvent, concentration and temperature were studied and optimized. At 130℃ and 20 bar H<sub>2</sub>, initial xylose concentration of 0.2 mmol/mL with water: isopropanol (1:1 v/v) mixture as solvent, conversion of xylose was found to be 98 % with a selectivity of 97 % towards xylitol. Comparison was also made with water alone as a solvent. A kinetic study of the reaction was performed. The transformation of xylose to xylitol using this novel catalyst is a green process since it entails substantially lower metal loading when compared to the conventional Raney nickel catalysts, it does not involve the use of noble metals such as Pt, Pd, Rh or Ru, and also does not suffer from the problem of metal leaching, making it superior to those catalysts reported yet.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115105"},"PeriodicalIF":5.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.cattod.2024.115104
Xuerui Zheng , Hisahiro Einaga
Manganese oxide catalysts with different structures and loading levels were supported on zeolite Y catalysts using a dry impregnation method for the oxidation of low concentrations of benzene with ozone. X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) studies revealed that manganese oxide was highly dispersed on the zeolite in a low oxidation state for those prepared with the acetate precursor, and highly oxidized and aggregated manganese oxide for those prepared with the nitrate precursor. In the reaction at 70 ℃, the benzene oxidation rate, CO2 selectivity, and ozone/benzene decomposition ratio were independent of the manganese loading, manganese precursor, and zeolite Y porosity. These catalytic properties were found to be less dependent on the manganese oxide structure. A slight increase in the reaction temperature enhanced both the catalytic activity and the catalyst performance, while the presence of water vapor had no significant impact. The XAFS analysis of the spent catalysts indicated that during the benzene decomposition reaction, the structure of the manganese oxide loaded on the catalyst was altered, and its oxidation state was uniformly reduced.
采用干法浸渍法在沸石 Y 催化剂上支撑了不同结构和负载水平的氧化锰催化剂,用于用臭氧氧化低浓度苯。X 射线衍射(XRD)和 X 射线吸收精细结构(XAFS)研究表明,用醋酸盐前驱体制备的氧化锰以低氧化态高度分散在沸石上,而用硝酸盐前驱体制备的氧化锰则高度氧化和聚集。在 70 ℃ 的反应中,苯氧化率、二氧化碳选择性和臭氧/苯分解率与锰负载量、锰前体和沸石 Y 的孔隙率无关。这些催化特性对氧化锰结构的依赖性较小。反应温度略微升高可提高催化活性和催化剂性能,而水蒸气的存在则无明显影响。对废催化剂的 XAFS 分析表明,在苯分解反应过程中,催化剂上负载的氧化锰结构发生了改变,其氧化态均匀降低。
{"title":"Effect of manganese oxides supported on zeolite Y on catalytic oxidation of benzene by ozone","authors":"Xuerui Zheng , Hisahiro Einaga","doi":"10.1016/j.cattod.2024.115104","DOIUrl":"10.1016/j.cattod.2024.115104","url":null,"abstract":"<div><div>Manganese oxide catalysts with different structures and loading levels were supported on zeolite Y catalysts using a dry impregnation method for the oxidation of low concentrations of benzene with ozone. X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) studies revealed that manganese oxide was highly dispersed on the zeolite in a low oxidation state for those prepared with the acetate precursor, and highly oxidized and aggregated manganese oxide for those prepared with the nitrate precursor. In the reaction at 70 ℃, the benzene oxidation rate, CO<sub>2</sub> selectivity, and ozone/benzene decomposition ratio were independent of the manganese loading, manganese precursor, and zeolite Y porosity. These catalytic properties were found to be less dependent on the manganese oxide structure. A slight increase in the reaction temperature enhanced both the catalytic activity and the catalyst performance, while the presence of water vapor had no significant impact. The XAFS analysis of the spent catalysts indicated that during the benzene decomposition reaction, the structure of the manganese oxide loaded on the catalyst was altered, and its oxidation state was uniformly reduced.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115104"},"PeriodicalIF":5.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.cattod.2024.115107
Victória Gonçalves F Pereira , Ana Serrano-Lotina , Raquel Portela , Miguel A. Bañares , Clarissa Perdomo Rodrigues , Fabio Souza Toniolo
Promotion of Ni-based catalysts supported on cordierite monoliths was investigated for methane steam reforming. First, cordierite was coated by ɣ-Al2O3, and then the catalyst components were deposited by successive wet impregnation, obtaining: NiAl/cordierite; NiCeAl/cordierite; NiCeLaAl/cordierite and NiCeZrAl/cordierite. The monolithic catalysts were characterized by adherence test, Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDX), N2 physisorption, Temperature-Programmed Reduction (TPR), CO chemisorption, as well as by in situ and operando Raman spectroscopy. The catalyst layer showed very good adherence and distribution of the components over the cordierite surface. The catalysts presented high activity between 600 and 800 °C at a H2O/CH4 molar ratio=1.5, except for NiCeAl/cordierite, which obtained lower methane conversion, associated with its lower nickel dispersion. The catalysts showed high stability under extreme conditions for carbon deposition (600 °C and H2O/CH4=1), over 90 h on stream. Raman spectroscopy revealed the presence of oxygen vacancies, which may be increased during ceria reduction, highlighting the potential of these catalysts to enhance the resistance to deactivation by carbon deposition in long-term tests.
研究了堇青石整体支撑的镍基催化剂对甲烷蒸汽转化的促进作用。首先用ɣ-Al2O3 对堇青石进行包覆,然后通过连续湿法浸渍沉积催化剂组分,得到了NiAl/堇青石、NiCeAl/堇青石、NiCeLaAl/堇青石和 NiCeZrAl/堇青石。通过附着力测试、扫描电子显微镜与能量色散 X 射线光谱(SEM-EDX)、N2 物理吸附、温度编程还原(TPR)、CO 化学吸附以及原位和操作拉曼光谱,对整体催化剂进行了表征。催化剂层在堇青石表面显示出非常好的附着性和组分分布。在 H2O/CH4 摩尔比=1.5 的条件下,催化剂在 600 至 800 °C 之间表现出较高的活性,但 NiCeAl/cordierite 除外,其甲烷转化率较低,这与其镍分散度较低有关。在碳沉积的极端条件下(600 °C,H2O/CH4=1),催化剂在90小时内显示出很高的稳定性。拉曼光谱显示存在氧空位,这可能在铈还原过程中增加,突出了这些催化剂在长期测试中提高抗碳沉积失活能力的潜力。
{"title":"Ni/Al2O3 promoted by CeO2, CeO2-La2O3, and CeO2-ZrO2 supported on cordierite monoliths for methane steam reforming","authors":"Victória Gonçalves F Pereira , Ana Serrano-Lotina , Raquel Portela , Miguel A. Bañares , Clarissa Perdomo Rodrigues , Fabio Souza Toniolo","doi":"10.1016/j.cattod.2024.115107","DOIUrl":"10.1016/j.cattod.2024.115107","url":null,"abstract":"<div><div>Promotion of Ni-based catalysts supported on cordierite monoliths was investigated for methane steam reforming. First, cordierite was coated by ɣ-Al<sub>2</sub>O<sub>3,</sub> and then the catalyst components were deposited by successive wet impregnation, obtaining: NiAl/cordierite; NiCeAl/cordierite; NiCeLaAl/cordierite and NiCeZrAl/cordierite. The monolithic catalysts were characterized by adherence test, Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDX), N<sub>2</sub> physisorption, Temperature-Programmed Reduction (TPR), CO chemisorption, as well as by <em>in situ</em> and <em>operando</em> Raman spectroscopy. The catalyst layer showed very good adherence and distribution of the components over the cordierite surface. The catalysts presented high activity between 600 and 800 °C at a H<sub>2</sub>O/CH<sub>4</sub> molar ratio=1.5, except for NiCeAl/cordierite, which obtained lower methane conversion, associated with its lower nickel dispersion. The catalysts showed high stability under extreme conditions for carbon deposition (600 °C and H<sub>2</sub>O/CH<sub>4</sub>=1), over 90 h on stream. Raman spectroscopy revealed the presence of oxygen vacancies, which may be increased during ceria reduction, highlighting the potential of these catalysts to enhance the resistance to deactivation by carbon deposition in long-term tests.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"445 ","pages":"Article 115107"},"PeriodicalIF":5.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}