Pub Date : 2024-10-31DOI: 10.1021/acssynbio.4c0058710.1021/acssynbio.4c00587
Ruijie Zhang, Sun-Young Kang, François Gaascht, Eliana L. Peña and Claudia Schmidt-Dannert*,
Inspired by the properties of natural protein-based biomaterials, protein nanomaterials are increasingly designed with natural or engineered peptides or with protein building blocks. Few examples describe the design of functional protein-based materials for biotechnological applications that can be readily manufactured, are amenable to functionalization, and exhibit robust assembly properties for macroscale material formation. Here, we designed a protein-scaffolding system that self-assembles into robust, macroscale materials suitable for in vitro cell-free applications. By controlling the coexpression in Escherichia coli of self-assembling scaffold building blocks with and without modifications for covalent attachment of cross-linking cargo proteins, hybrid scaffolds with spatially organized conjugation sites are overproduced that can be readily isolated. Cargo proteins, including enzymes, are rapidly cross-linked onto scaffolds for the formation of functional materials. We show that these materials can be used for the in vitro operation of a coimmobilized two-enzyme reaction and that the protein material can be recovered and reused. We believe that this work will provide a versatile platform for the design and scalable production of functional materials with customizable properties and the robustness required for biotechnological applications.
{"title":"Design of a Genetically Programmable and Customizable Protein Scaffolding System for the Hierarchical Assembly of Robust, Functional Macroscale Materials","authors":"Ruijie Zhang, Sun-Young Kang, François Gaascht, Eliana L. Peña and Claudia Schmidt-Dannert*, ","doi":"10.1021/acssynbio.4c0058710.1021/acssynbio.4c00587","DOIUrl":"https://doi.org/10.1021/acssynbio.4c00587https://doi.org/10.1021/acssynbio.4c00587","url":null,"abstract":"<p >Inspired by the properties of natural protein-based biomaterials, protein nanomaterials are increasingly designed with natural or engineered peptides or with protein building blocks. Few examples describe the design of functional protein-based materials for biotechnological applications that can be readily manufactured, are amenable to functionalization, and exhibit robust assembly properties for macroscale material formation. Here, we designed a protein-scaffolding system that self-assembles into robust, macroscale materials suitable for in vitro cell-free applications. By controlling the coexpression in <i>Escherichia coli</i> of self-assembling scaffold building blocks with and without modifications for covalent attachment of cross-linking cargo proteins, hybrid scaffolds with spatially organized conjugation sites are overproduced that can be readily isolated. Cargo proteins, including enzymes, are rapidly cross-linked onto scaffolds for the formation of functional materials. We show that these materials can be used for the in vitro operation of a coimmobilized two-enzyme reaction and that the protein material can be recovered and reused. We believe that this work will provide a versatile platform for the design and scalable production of functional materials with customizable properties and the robustness required for biotechnological applications.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"13 11","pages":"3724–3745 3724–3745"},"PeriodicalIF":3.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1021/acssynbio.4c0059410.1021/acssynbio.4c00594
Chengyou Shi, and , Huimin Zhao*,
Ribosomally synthesized lanthionine-containing peptides (lanthipeptides) have emerged as a promising source of antimicrobials against multidrug resistance pathogens. An effective way to discover and engineer lanthipeptides is through heterologous expression of their biosynthetic gene clusters (BGCs) in a host of choice. Here we report a plug-and-play pathway refactoring strategy for rapid evaluation of lanthipeptide BGCs in Bacillus subtilis based on the T7 expression system. As a proof of concept, we used this strategy to not only observe the successful production of a known lanthipeptide haloduracin β but also discover two new human-microbiota-derived lanthipeptides that previously failed to be produced in Escherichia coli. The resulting B. subtilis plug-and-play T7 expression system should enable the genome mining of new lanthipeptides in a high-throughput manner.
{"title":"A Plug-and-Play T7 Expression System for Heterologous Production of Lanthipeptides in Bacillus subtilis","authors":"Chengyou Shi, and , Huimin Zhao*, ","doi":"10.1021/acssynbio.4c0059410.1021/acssynbio.4c00594","DOIUrl":"https://doi.org/10.1021/acssynbio.4c00594https://doi.org/10.1021/acssynbio.4c00594","url":null,"abstract":"<p >Ribosomally synthesized lanthionine-containing peptides (lanthipeptides) have emerged as a promising source of antimicrobials against multidrug resistance pathogens. An effective way to discover and engineer lanthipeptides is through heterologous expression of their biosynthetic gene clusters (BGCs) in a host of choice. Here we report a plug-and-play pathway refactoring strategy for rapid evaluation of lanthipeptide BGCs in <i>Bacillus subtilis</i> based on the T7 expression system. As a proof of concept, we used this strategy to not only observe the successful production of a known lanthipeptide haloduracin β but also discover two new human-microbiota-derived lanthipeptides that previously failed to be produced in <i>Escherichia coli</i>. The resulting <i>B. subtilis</i> plug-and-play T7 expression system should enable the genome mining of new lanthipeptides in a high-throughput manner.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"13 11","pages":"3746–3753 3746–3753"},"PeriodicalIF":3.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1126/scirobotics.adt3842
Amos Matsiko
Robots can be powerful tools to advance basic scientific discovery.
机器人可以成为推动基础科学发现的强大工具。
{"title":"Advancing scientific discovery with the aid of robotics.","authors":"Amos Matsiko","doi":"10.1126/scirobotics.adt3842","DOIUrl":"https://doi.org/10.1126/scirobotics.adt3842","url":null,"abstract":"<p><p>Robots can be powerful tools to advance basic scientific discovery.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"9 95","pages":"eadt3842"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ginsenosides are major active components of Panax ginseng, which are generally glycosylated at C3–OH and/or C20–OH of protopanaxadiol (PPD) and C6–OH and/or C20–OH of protopanaxatriol. However, the glucosides of dammarenediol-II (DM), which is the direct precursor of PPD, have scarcely been separated from P. ginseng. Because different positions and numbers of the hydroxyl and glycosyl groups lead to a diversity of structure and function of the ginsenosides, it can be inferred that DM glucosides may have different pharmacological activities compared with natural ginsenosides. Herein, we first constructed the cell factory for de novo biosynthesis of 3-O-(β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl)-dammar-24-ene-3β,20S-diol (3β-O-Glc2-DM) by introducing the codon-optimized genes encoding dammarenediol-II synthase, two UDP-glycosyltransferases (UGTs) including UGT74AC1-M7 from Siraitia grosvenorii and UGTPg29 from P. ginseng in Saccharomyces cerevisiae via the CRISPR/Cas9 system. The titer of 3β-O-Glc2-DM was then increased from 18.9 to 148.0 mg/L by several metabolic engineering strategies including overexpressing the rate-limiting enzymes of triterpenoid biosynthesis, balancing carbon flux of biosynthetic pathways of triterpenoid and ergosterol, and engineering endoplasmic reticulum. Furthermore, the 3β-O-Glc2-DM titer of 766.3 mg/L was achieved through fed-batch fermentation in a 3-L bioreactor. Finally, in vitro assays demonstrated that 3β-O-Glc2-DM exhibited a protective effect on H/R-induced cardiomyocyte damage. This work provides a feasible approach for production of 3β-O-Glc2-DM as a potential cardioprotective drug candidate.
{"title":"Construction and Optimization of a Yeast Cell Factory for Producing Active Unnatural Ginsenoside 3β-O-Glc2-DM","authors":"Yanxin Li, Xiaoyan Sun, Yanxin Liu, Hua Sun, Chen Zhou, Yu Peng, Ting Gong, Jingjing Chen, Tianjiao Chen, Jinling Yang* and Ping Zhu*, ","doi":"10.1021/acssynbio.4c0049410.1021/acssynbio.4c00494","DOIUrl":"https://doi.org/10.1021/acssynbio.4c00494https://doi.org/10.1021/acssynbio.4c00494","url":null,"abstract":"<p >Ginsenosides are major active components of <i>Panax ginseng</i>, which are generally glycosylated at C3–OH and/or C20–OH of protopanaxadiol (PPD) and C6–OH and/or C20–OH of protopanaxatriol. However, the glucosides of dammarenediol-II (DM), which is the direct precursor of PPD, have scarcely been separated from <i>P. ginseng</i>. Because different positions and numbers of the hydroxyl and glycosyl groups lead to a diversity of structure and function of the ginsenosides, it can be inferred that DM glucosides may have different pharmacological activities compared with natural ginsenosides. Herein, we first constructed the cell factory for <i>de novo</i> biosynthesis of 3-<i>O</i>-(β-<i>D</i>-glucopyranosyl-(1→2)-β-<i>D</i>-glucopyranosyl)-dammar-24-ene-3β,20<i>S</i>-diol (3β-<i>O</i>-Glc<sup>2</sup>-DM) by introducing the codon-optimized genes encoding dammarenediol-II synthase, two UDP-glycosyltransferases (UGTs) including UGT74AC1-M7 from <i>Siraitia grosvenorii</i> and UGTPg29 from <i>P. ginseng</i> in <i>Saccharomyces cerevisiae</i> via the CRISPR/Cas9 system. The titer of 3β-<i>O</i>-Glc<sup>2</sup>-DM was then increased from 18.9 to 148.0 mg/L by several metabolic engineering strategies including overexpressing the rate-limiting enzymes of triterpenoid biosynthesis, balancing carbon flux of biosynthetic pathways of triterpenoid and ergosterol, and engineering endoplasmic reticulum. Furthermore, the 3β-<i>O</i>-Glc<sup>2</sup>-DM titer of 766.3 mg/L was achieved through fed-batch fermentation in a 3-L bioreactor. Finally, <i>in vitro</i> assays demonstrated that 3β-<i>O</i>-Glc<sup>2</sup>-DM exhibited a protective effect on H/R-induced cardiomyocyte damage. This work provides a feasible approach for production of 3β-<i>O</i>-Glc<sup>2</sup>-DM as a potential cardioprotective drug candidate.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"13 11","pages":"3677–3685 3677–3685"},"PeriodicalIF":3.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.jhep.2024.10.031
En Ying Tan, Pojsakorn Danpanichkul, Jie Ning Yong, Zhenning Yu, Darren Jun Hao Tan, Wen Hui Lim, Benjamin Koh, Ryan Yan Zhe Lim, Ethan Kai Jun Tham, Kartik Mitra, Asahiro Morishita, Yao-Chun Hsu, Ju Dong Yang, Hirokazu Takahashi, Ming-Hua Zheng, Atsushi Nakajima, Cheng Han Ng, Karn Wijarnpreecha, Mark D. Muthiah, Amit G. Singal, Daniel Q. Huang
Background & Aims
The epidemiology of adult primary liver cancer continues to evolve, related to the increasing prevalence of metabolic disease, rising alcohol consumption, advancements in vaccination for hepatitis B (HBV), and antiviral therapy for hepatitis C (HCV). Disparities in care and the burden of liver cancer between populations persist. We assess trends in the burden of liver cancer and contributions by various etiologies across 204 countries and territories from 2010 to 2021.
Methods
Utilizing the methodological framework of the Global Burden of Disease Study 2021, we analyzed global and regional temporal trends in incidence and mortality, and the contributions of various etiologies of liver disease.
Results
In 2021, there were an estimated 529202 incident cases and 483875 deaths related to liver cancer. From 2010 to 2021, global liver cancer incident cases and deaths increased by 26% and 25%, respectively. Global age-standardized incidence rates (ASIRs) and death rates (ASDRs) for liver cancer declined but rose in the Americas and Southeast Asia. HBV remained the dominant cause of global incident liver cancer cases and deaths. Metabolic dysfunction-associated steatotic liver disease (MASLD) was the only etiology of liver cancer with rising ASIRs and ASDRs. By contrast, ASIRs and ASDRs remained stable for alcohol-related liver cancer, and declined for HBV- and HCV-related liver cancer.
Conclusions
While age-adjusted incidence and deaths from liver cancer have started to decline, the absolute number of incident cases and deaths continues to increase. Population growth and aging contribute to the observed disconnect in the temporal trends of absolute cases and rates. Disparities remain, and MASLD-related liver cancer continues to surge.
{"title":"Liver Cancer in 2021: Global Burden of Disease Study","authors":"En Ying Tan, Pojsakorn Danpanichkul, Jie Ning Yong, Zhenning Yu, Darren Jun Hao Tan, Wen Hui Lim, Benjamin Koh, Ryan Yan Zhe Lim, Ethan Kai Jun Tham, Kartik Mitra, Asahiro Morishita, Yao-Chun Hsu, Ju Dong Yang, Hirokazu Takahashi, Ming-Hua Zheng, Atsushi Nakajima, Cheng Han Ng, Karn Wijarnpreecha, Mark D. Muthiah, Amit G. Singal, Daniel Q. Huang","doi":"10.1016/j.jhep.2024.10.031","DOIUrl":"https://doi.org/10.1016/j.jhep.2024.10.031","url":null,"abstract":"<h3>Background & Aims</h3>The epidemiology of adult primary liver cancer continues to evolve, related to the increasing prevalence of metabolic disease, rising alcohol consumption, advancements in vaccination for hepatitis B (HBV), and antiviral therapy for hepatitis C (HCV). Disparities in care and the burden of liver cancer between populations persist. We assess trends in the burden of liver cancer and contributions by various etiologies across 204 countries and territories from 2010 to 2021.<h3>Methods</h3>Utilizing the methodological framework of the Global Burden of Disease Study 2021, we analyzed global and regional temporal trends in incidence and mortality, and the contributions of various etiologies of liver disease.<h3>Results</h3>In 2021, there were an estimated 529202 incident cases and 483875 deaths related to liver cancer. From 2010 to 2021, global liver cancer incident cases and deaths increased by 26% and 25%, respectively. Global age-standardized incidence rates (ASIRs) and death rates (ASDRs) for liver cancer declined but rose in the Americas and Southeast Asia. HBV remained the dominant cause of global incident liver cancer cases and deaths. Metabolic dysfunction-associated steatotic liver disease (MASLD) was the only etiology of liver cancer with rising ASIRs and ASDRs. By contrast, ASIRs and ASDRs remained stable for alcohol-related liver cancer, and declined for HBV- and HCV-related liver cancer.<h3>Conclusions</h3>While age-adjusted incidence and deaths from liver cancer have started to decline, the absolute number of incident cases and deaths continues to increase. Population growth and aging contribute to the observed disconnect in the temporal trends of absolute cases and rates. Disparities remain, and MASLD-related liver cancer continues to surge.","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"126 1","pages":""},"PeriodicalIF":25.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1126/scirobotics.adn2733
Tony J Prescott, Kai Vogeley, Agnieszka Wykowska
Robotics can play a useful role in the scientific understanding of the sense of self, both through the construction of embodied models of the self and through the use of robots as experimental probes to explore the human self. In both cases, the embodiment of the robot allows us to devise and test hypotheses about the nature of the self, with regard to its development, its manifestation in behavior, and the diversity of selves in humans, animals, and, potentially, machines. This paper reviews robotics research that addresses the topic of the self-the minimal self, the extended self, and disorders of the self-and highlights future directions and open challenges in understanding the self through constructing its components in artificial systems. An emerging view is that key phenomena of the self can be generated in robots with suitably configured sensor and actuator systems and a layered cognitive architecture involving networks of predictive models.
{"title":"Understanding the sense of self through robotics.","authors":"Tony J Prescott, Kai Vogeley, Agnieszka Wykowska","doi":"10.1126/scirobotics.adn2733","DOIUrl":"https://doi.org/10.1126/scirobotics.adn2733","url":null,"abstract":"<p><p>Robotics can play a useful role in the scientific understanding of the sense of self, both through the construction of embodied models of the self and through the use of robots as experimental probes to explore the human self. In both cases, the embodiment of the robot allows us to devise and test hypotheses about the nature of the self, with regard to its development, its manifestation in behavior, and the diversity of selves in humans, animals, and, potentially, machines. This paper reviews robotics research that addresses the topic of the self-the minimal self, the extended self, and disorders of the self-and highlights future directions and open challenges in understanding the self through constructing its components in artificial systems. An emerging view is that key phenomena of the self can be generated in robots with suitably configured sensor and actuator systems and a layered cognitive architecture involving networks of predictive models.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"9 95","pages":"eadn2733"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1038/s41551-024-01271-x
Shuangyi Cai, Thomas Hu, Abhijeet Venkataraman, Felix G. Rivera Moctezuma, Efe Ozturk, Nicholas Zhang, Mingshuang Wang, Tatenda Zvidzai, Sandip Das, Adithya Pillai, Frank Schneider, Suresh S. Ramalingam, You-Take Oh, Shi-Yong Sun, Ahmet F. Coskun
Protein–protein interactions (PPIs) regulate signalling pathways and cell phenotypes, and the visualization of spatially resolved dynamics of PPIs would thus shed light on the activation and crosstalk of signalling networks. Here we report a method that leverages a sequential proximity ligation assay for the multiplexed profiling of PPIs with up to 47 proteins involved in multisignalling crosstalk pathways. We applied the method, followed by conventional immunofluorescence, to cell cultures and tissues of non-small-cell lung cancers with a mutated epidermal growth-factor receptor to determine the co-localization of PPIs in subcellular volumes and to reconstruct changes in the subcellular distributions of PPIs in response to perturbations by the tyrosine kinase inhibitor osimertinib. We also show that a graph convolutional network encoding spatially resolved PPIs can accurately predict the cell-treatment status of single cells. Multiplexed proximity ligation assays aided by graph-based deep learning can provide insights into the subcellular organization of PPIs towards the design of drugs for targeting the protein interactome.
{"title":"Spatially resolved subcellular protein–protein interactomics in drug-perturbed lung-cancer cultures and tissues","authors":"Shuangyi Cai, Thomas Hu, Abhijeet Venkataraman, Felix G. Rivera Moctezuma, Efe Ozturk, Nicholas Zhang, Mingshuang Wang, Tatenda Zvidzai, Sandip Das, Adithya Pillai, Frank Schneider, Suresh S. Ramalingam, You-Take Oh, Shi-Yong Sun, Ahmet F. Coskun","doi":"10.1038/s41551-024-01271-x","DOIUrl":"https://doi.org/10.1038/s41551-024-01271-x","url":null,"abstract":"<p>Protein–protein interactions (PPIs) regulate signalling pathways and cell phenotypes, and the visualization of spatially resolved dynamics of PPIs would thus shed light on the activation and crosstalk of signalling networks. Here we report a method that leverages a sequential proximity ligation assay for the multiplexed profiling of PPIs with up to 47 proteins involved in multisignalling crosstalk pathways. We applied the method, followed by conventional immunofluorescence, to cell cultures and tissues of non-small-cell lung cancers with a mutated epidermal growth-factor receptor to determine the co-localization of PPIs in subcellular volumes and to reconstruct changes in the subcellular distributions of PPIs in response to perturbations by the tyrosine kinase inhibitor osimertinib. We also show that a graph convolutional network encoding spatially resolved PPIs can accurately predict the cell-treatment status of single cells. Multiplexed proximity ligation assays aided by graph-based deep learning can provide insights into the subcellular organization of PPIs towards the design of drugs for targeting the protein interactome.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"11 1","pages":""},"PeriodicalIF":28.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1126/scirobotics.adn7299
Ninad Jadhav, Sushmita Bhattacharya, Daniel Vogt, Yaniv Aluma, Pernille Tonessen, Akarsh Prabhakara, Swarun Kumar, Shane Gero, Robert J Wood, Stephanie Gil
Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning-based routing (autonomy module) and synthetic aperture radar-based very high frequency (VHF) signal-based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an "engineered whale"-a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists.
{"title":"Reinforcement learning-based framework for whale rendezvous via autonomous sensing robots.","authors":"Ninad Jadhav, Sushmita Bhattacharya, Daniel Vogt, Yaniv Aluma, Pernille Tonessen, Akarsh Prabhakara, Swarun Kumar, Shane Gero, Robert J Wood, Stephanie Gil","doi":"10.1126/scirobotics.adn7299","DOIUrl":"https://doi.org/10.1126/scirobotics.adn7299","url":null,"abstract":"<p><p>Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning-based routing (autonomy module) and synthetic aperture radar-based very high frequency (VHF) signal-based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an \"engineered whale\"-a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"9 95","pages":"eadn7299"},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1126/scirobotics.adr5247
Ken Goldberg, Gary Guthart
Advances in AI and robotics have the potential to enhance the dexterity of human surgeons.
人工智能和机器人技术的进步有可能提高人类外科医生的灵巧性。
{"title":"Augmented dexterity: How robots can enhance human surgical skills","authors":"Ken Goldberg, Gary Guthart","doi":"10.1126/scirobotics.adr5247","DOIUrl":"10.1126/scirobotics.adr5247","url":null,"abstract":"<div >Advances in AI and robotics have the potential to enhance the dexterity of human surgeons.</div>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"9 95","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}