Background and objectives
Linezolid is a broad-spectrum antibiotic against Gram-positive bacterial infections. Widespread use of linezolid has brought about significant adverse effects and potential reproductive toxicity, but there is not yet any study regarding to the transgenerational impact.
Methods
Gut microbiota and metabolites from the 12-weeks old male mice who were treated with one-week linezolid at 4 weeks of age, as well as those from their offsprings, were analyzed by metagenomics and metabolomics, respectively. Reproductivity of the male parents were monitored, including fertility, litter size, survival and weight gain of offsprings.
Results
Offsprings survival from the linezolid-treated male parents was obviously decreased, although fertilities, litter size, or weight gain was not affected. The linezolid-induced gut microbiota perturbation in male parents was manifested as lower alpha diversity, distinguishing beta diversity, and the dramatically altered profiles of function genes and metabolites. Especially, linezolid exposure reversed the relationship between Dysosmobacter and butyrogenic species, and that between Dysosmobacter and inflammation-associated species. Interestingly, gut microbiota dysbiosis also existed in both female and male offsprings from the treated male parents. Moreover, it was found that the differential metabolites enriched in ABC transporter pathway were found male parents and offsprings, while those enriched in sphingolipid signaling pathway were only found in offsprings of both sexes.
Conclusions
The early-life short-term exposure to linezolid make long-term gut microbiota dysregulation, which was even inherited from parents to offsprings. These findings raised critical concern about the ecological consequences of early-life antibiotic exposure and clinical safety evaluations.
扫码关注我们
求助内容:
应助结果提醒方式:
