Pub Date : 2018-09-01DOI: 10.23919/WMNC.2018.8480918
M. Farooq, D. Pesch
The Routing Protocol for low-power and Lossy networks (RPL) is the most popular routing protocol for low-power and lossy networks (LLNs). Recent studies demonstrate that RPL performs poorly in peer-to-peer (P2P) communication. However, P2P communication is of immense importance in many LLNs that require actuation and control operations, such as cyber-physical systems. In order to alleviate the performance problem of RPL, we present a mechanism to enhance P2P route construction and data packet forwarding in RPL’s storing and non-storing mode of operations (MoPs), which we call Enhanced RPL (ERPL). The salient features of ERPL include the following: (i) optimized P2P routing and data forwarding, (ii) no additional control messages, and (iii) ERPL can coexist with standard RPL implementations. We have implemented ERPL in the Contiki operating system and extensively evaluated it against a RPL implementation using Cooja-based emulation and physical testbed based experiments. Our results demonstrate that ERPL outperforms standard RPL in P2P communication and its optimized P2P route construction and data forwarding algorithms also positively impact the protocol’s performance in multipoint to point (MP2P) and point to multipoint (P2MP) communications. Moreover, ERPL is more energy-efficient. Our results also shed light on the performance of MP2P, P2MP, and P2P communications relative to RPL’s destination-oriented directed acyclic graph (DODAG) depth, i.e., a deeper DODAG negatively impacts the performance of MP2P and P2MP communications, however it positively impacts P2P communication, while the reverse holds true for a relatively shallow DODAG.
{"title":"ERPL: An Enhanced Peer-to-Peer Routing Mechanism for Low-Power and Lossy Networks","authors":"M. Farooq, D. Pesch","doi":"10.23919/WMNC.2018.8480918","DOIUrl":"https://doi.org/10.23919/WMNC.2018.8480918","url":null,"abstract":"The Routing Protocol for low-power and Lossy networks (RPL) is the most popular routing protocol for low-power and lossy networks (LLNs). Recent studies demonstrate that RPL performs poorly in peer-to-peer (P2P) communication. However, P2P communication is of immense importance in many LLNs that require actuation and control operations, such as cyber-physical systems. In order to alleviate the performance problem of RPL, we present a mechanism to enhance P2P route construction and data packet forwarding in RPL’s storing and non-storing mode of operations (MoPs), which we call Enhanced RPL (ERPL). The salient features of ERPL include the following: (i) optimized P2P routing and data forwarding, (ii) no additional control messages, and (iii) ERPL can coexist with standard RPL implementations. We have implemented ERPL in the Contiki operating system and extensively evaluated it against a RPL implementation using Cooja-based emulation and physical testbed based experiments. Our results demonstrate that ERPL outperforms standard RPL in P2P communication and its optimized P2P route construction and data forwarding algorithms also positively impact the protocol’s performance in multipoint to point (MP2P) and point to multipoint (P2MP) communications. Moreover, ERPL is more energy-efficient. Our results also shed light on the performance of MP2P, P2MP, and P2P communications relative to RPL’s destination-oriented directed acyclic graph (DODAG) depth, i.e., a deeper DODAG negatively impacts the performance of MP2P and P2MP communications, however it positively impacts P2P communication, while the reverse holds true for a relatively shallow DODAG.","PeriodicalId":274628,"journal":{"name":"2018 11th IFIP Wireless and Mobile Networking Conference (WMNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117340205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.23919/WMNC.2018.8480934
Carmen Delgado, Sérgio Batista, M. Canales, J. Gállego, J. Ortín, M. Cesana
We present a system architecture implementation to perform dynamic application allocation in shared sensor networks, where highly integrated wireless sensor systems are used to support multiple applications. The architecture is based on a central controller that collects the received data from the sensor nodes, dynamically decides which applications must be simultaneously deployed in each node and, accordingly, over-the-air reprograms the sensor nodes. Waspmote devices are used as sensor nodes that communicate with the controller using ZigBee protocol. Experimental results show the viability of the proposal.
{"title":"An Implementation for Dynamic Application Allocation in Shared Sensor Networks","authors":"Carmen Delgado, Sérgio Batista, M. Canales, J. Gállego, J. Ortín, M. Cesana","doi":"10.23919/WMNC.2018.8480934","DOIUrl":"https://doi.org/10.23919/WMNC.2018.8480934","url":null,"abstract":"We present a system architecture implementation to perform dynamic application allocation in shared sensor networks, where highly integrated wireless sensor systems are used to support multiple applications. The architecture is based on a central controller that collects the received data from the sensor nodes, dynamically decides which applications must be simultaneously deployed in each node and, accordingly, over-the-air reprograms the sensor nodes. Waspmote devices are used as sensor nodes that communicate with the controller using ZigBee protocol. Experimental results show the viability of the proposal.","PeriodicalId":274628,"journal":{"name":"2018 11th IFIP Wireless and Mobile Networking Conference (WMNC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128347494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.23919/WMNC.2018.8480926
M. Beranek, I. Lisunov, V. Vacek
Extensive use of various types of IoT devices has resulted in high demand for developers with IoT skills. We have identified the challenges facing IoT developers and designed suitable student projects that aim to address these challenges. It is our experience, that it is important to match the IoT platform used for the project to the skills of the students to achieve optimal learning outcomes. In this paper, we describe two case studies that use high-quality modular IoT kits to accelerate the learning process and to allow students with relatively low technical skills to implement working solutions to real-world problems.
{"title":"Learning IoT skills in the context of student projects","authors":"M. Beranek, I. Lisunov, V. Vacek","doi":"10.23919/WMNC.2018.8480926","DOIUrl":"https://doi.org/10.23919/WMNC.2018.8480926","url":null,"abstract":"Extensive use of various types of IoT devices has resulted in high demand for developers with IoT skills. We have identified the challenges facing IoT developers and designed suitable student projects that aim to address these challenges. It is our experience, that it is important to match the IoT platform used for the project to the skills of the students to achieve optimal learning outcomes. In this paper, we describe two case studies that use high-quality modular IoT kits to accelerate the learning process and to allow students with relatively low technical skills to implement working solutions to real-world problems.","PeriodicalId":274628,"journal":{"name":"2018 11th IFIP Wireless and Mobile Networking Conference (WMNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130215213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-09-07DOI: 10.23919/wmnc.2018.8480925
H. Zheng, S. Kasera
{"title":"Technical Program Committee Chairs’ Message","authors":"H. Zheng, S. Kasera","doi":"10.23919/wmnc.2018.8480925","DOIUrl":"https://doi.org/10.23919/wmnc.2018.8480925","url":null,"abstract":"","PeriodicalId":274628,"journal":{"name":"2018 11th IFIP Wireless and Mobile Networking Conference (WMNC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132996272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}