Numerous chemical and biological entities are greatly impacted by non-covalent interactions in terms of their stability and structure. One such example is the interaction of aromatic rings. These interactions are highly valued in the domains of astrochemistry, biology, chemistry, biochemistry, and material science. The main goals of this study are to explore the Potential Energy Surface (PES) of Chrysene (Chy) heterodimers, identify the most stable configurations among the Chy-Bz, Chy-Np, and Chy-Anth heterodimer complexes, and analyze the inter-molecular interactions between these molecules. This analysis was conducted utilizing ab initio computational techniques. On their PES, the Chy-Np heterodimer exhibited four minima, while the Chy-Bz and Chy-Anth heterodimer complexes showed three. Compared to conformers oriented perpendicularly, co-facial arrangement conformers in Chy heterodimer complexes have stable structures. The global minimum structure of Chy-Bz has been determined to be the face isomer, while Chy-Np and Chy-Anth have global minimum structures of the cross isomer. The binding energies of the structures generated by MP2 are higher than those of DFT-D3, DFT-D4, and SCS-MP2. Optimized geometries and binding energies of larger hydrocarbon aromatic systems are explained in detail by B3LYP-D3 and the recently created B3LYP-D4.
This study employed multiconfigurational CASSCF and MS-CASPT2 methods to investigate the photoinduced isomerization mechanism of 1,1′-azobis-1,2,3-triazole. The MS-CASPT2//CASSCF computational results indicate that the photoisomerization reaction of 1,1′-azobis-1,2,3-triazole involves a non-adiabatic transition pathway through the S2 state. After photoexcitation to the S2 state, the molecule undergoes internal conversion to reach S1-min, followed by a non-radiative transition back to the ground state. The S1/S0-CI and S1-min have similar structures and close energies, which facilitates unidirectional rotation. The weak coupling between the ground state and excited states may be due to the strong electron-withdrawing nature of the N8 chain. Additionally, using the MS-CASPT2//CASSCF computational results as a reference, we compared the differences in describing the photoisomerization process of this compound using the SF-DFT method, both qualitatively and quantitatively. The results demonstrate that the SF-DFT method significantly underestimates the energy of the S1 state. These findings are expected to deepen the understanding of non-adiabatic transitions in the photoinduced rotation of high-nitrogen compounds and provide theoretical insights for other high-nitrogen compounds that may exhibit photochromism.
The development of degradation treatment technology for waste hydrofluorocarbons (HFCs) was urgent. Copper, a commonly used catalyst, can be used to efficiently catalyze the pyrolysis of pure HFCs, but the catalytic pyrolysis study of HFC mixtures was lacking. In this work, the catalytic pyrolysis of R134a/R32 refrigerant mixture over Cu(1 1 1) surface was studied by using density functional theory method. Four initial catalytic pyrolysis reactions of R134a in adsorbed R134a/R32 mixture and adsorbed R134a, two initial catalytic pyrolysis reactions of R32 in adsorbed R134a/R32 mixture and adsorbed R32 were investigated. The results showed that copper had a better catalytic effect on the pyrolysis of adsorbed R134a/R32 mixture, adsorbed R134a and adsorbed R32. On the Cu(1 1 1) surface, the pyrolysis of R134a was inhibited and the pyrolysis of R32 was improved by the mixture of R134a and R32.