Luminescent radicals exhibiting SOMO–HOMO conversion (SHC) have attracted considerable interest due to their distinctive photophysical properties. This work presents a computational study on a series of boracyclic-based radicals, exploring how π-conjugation and electron-donating/withdrawing groups tune electronic structure and radiative and nonradiative decay rates. Calculations reveal that all designed radicals display SHC behavior, with luminescence originating from the D₁ state. Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses indicate pronounced intramolecular charge transfer (ICT) and noncovalent interactions stabilized by boron–oxygen coordination. Electron-donating substituents enhance electron delocalization, promoting radical aromaticity and stability. In contrast, nonradiative decay is modulated by structural relaxation and hybridized charge-transfer and local excitation (CT–LE) states. These results underscore the critical role of π-conjugation, number of boracyclic units, and substituent electronic nature in tuning electronic properties and recombination processes. The insights offer guidelines for enhancing photostability and broadening photofunctionality in radical-based luminescent systems.
扫码关注我们
求助内容:
应助结果提醒方式:
