The increasing demand of lightweight, strong and sustainable materials in aerospace, automobile and marine sectors is leading towards the development of new materials and structures. The sandwich composite is one of them which is well-known for their high strength to weight ratio and the fiber based sandwich structures with cellular core show comparatively good mechanical, acoustic, thermal and energy absorption properties than metallic cellular structure. The purpose of this work is to fabricate a sandwich structure with jute fiber reinforced polymer composite (JFRP) as core and glass fiber reinforced polymer composite (GFRP) as face sheet and to investigate bending properties of the fabricated structures for varying face sheet thicknesses. Skin and core honeycomb strips of the sandwich composites were manufactured using hand layup method and steel mold was used to obtain honeycomb shape. Flexural test results show that face sheet thickness has significant effect on the flexural behavior such as peak load, flexural strength and energy absorption. The failure mechanism during bending tests were also identified which would serve as a basis for future improvement of manufactured composites. The delamination at the interface between the core and the face sheet was the first catastrophic failure during bending. The presented sandwich structures are able to carry a significant amount of load even after failure.
{"title":"Flexural Behavior of Sandwich Composite Made of JFRP Honeycomb as Core and GFRP as Skin","authors":"Md. Rakibul Islam, Md. Arifuzzaman, Asif Karim Neon, Md. Shahe Duzzaman, Md. Rafiul Islam","doi":"10.38032/jea.2020.04.001","DOIUrl":"https://doi.org/10.38032/jea.2020.04.001","url":null,"abstract":"The increasing demand of lightweight, strong and sustainable materials in aerospace, automobile and marine sectors is leading towards the development of new materials and structures. The sandwich composite is one of them which is well-known for their high strength to weight ratio and the fiber based sandwich structures with cellular core show comparatively good mechanical, acoustic, thermal and energy absorption properties than metallic cellular structure. The purpose of this work is to fabricate a sandwich structure with jute fiber reinforced polymer composite (JFRP) as core and glass fiber reinforced polymer composite (GFRP) as face sheet and to investigate bending properties of the fabricated structures for varying face sheet thicknesses. Skin and core honeycomb strips of the sandwich composites were manufactured using hand layup method and steel mold was used to obtain honeycomb shape. Flexural test results show that face sheet thickness has significant effect on the flexural behavior such as peak load, flexural strength and energy absorption. The failure mechanism during bending tests were also identified which would serve as a basis for future improvement of manufactured composites. The delamination at the interface between the core and the face sheet was the first catastrophic failure during bending. The presented sandwich structures are able to carry a significant amount of load even after failure.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128737919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.38032/jea.2021.03.006
S. Mahtab, D. Roy, M. Rabbi, Md. Iftekharul Alam
The design of a propeller plays a significant role in naval architecture. Optimization of various design factors is the primary concern for effective and efficient propulsion. This study investigates the optimization of the B-series marine propellers using three different methods, i.e. (i) a non-linear constrained single-objective optimization approach using the Non-Dominated Sorting Genetic Algorithm (NSGA-II), (ii) a python package for dynamic optimization based optimization software ‘Gekko’, (iii) an iterative approach and results were compared with each other. Efficiency is considered as the single objective function whereas three constraints are imposed: cavitation, thrust and strength. Analogous characteristics have been found in the comparison of results from all three methods. Comparing the various factors, this study suggests that, Gekko can be used as the optimization algorithm.
{"title":"Design Optimization of B-series Marine Propeller using NSGA-II, Iterative and Gekko Algorithm","authors":"S. Mahtab, D. Roy, M. Rabbi, Md. Iftekharul Alam","doi":"10.38032/jea.2021.03.006","DOIUrl":"https://doi.org/10.38032/jea.2021.03.006","url":null,"abstract":"The design of a propeller plays a significant role in naval architecture. Optimization of various design factors is the primary concern for effective and efficient propulsion. This study investigates the optimization of the B-series marine propellers using three different methods, i.e. (i) a non-linear constrained single-objective optimization approach using the Non-Dominated Sorting Genetic Algorithm (NSGA-II), (ii) a python package for dynamic optimization based optimization software ‘Gekko’, (iii) an iterative approach and results were compared with each other. Efficiency is considered as the single objective function whereas three constraints are imposed: cavitation, thrust and strength. Analogous characteristics have been found in the comparison of results from all three methods. Comparing the various factors, this study suggests that, Gekko can be used as the optimization algorithm.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116609895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.38032/jea.2021.03.005
Kazi Safayet Md. Shabbir, Md Imteaz Ahmed, Marzan Alam
This research was utilized to identify glaucoma, a type of eye illness. This endeavor necessitates the use of pictures from the fundus camera for image processing. This study reflects the effort done to detect glaucoma-affected eyes utilizing image feature extraction using Oriented FAST and Rotated BRIEF (ORB). ORB is a binary descriptor approach that is based on BRIEF and is highly fast. This technique is insensitive to picture noise and is invariant to any rotation. ORB is two orders of magnitude faster than SURF and performs similarly to SIFT. It is more efficient than other texture analysis methods. It is less computationally difficult than other approaches in the literature. This technique extracts features and detects texture by inspecting each pixel of the retina picture. It was trained on 160 fundus pictures of normal and glaucoma-affected retinas. After that, any healthy or glaucoma-affected eye may be easily recognized by obtaining an accurate eye picture. The results reveal that this technique has a precision and accuracy of more than 90%.
{"title":"Detection of Glaucoma using ORB (Oriented FAST and Rotated BRIEF) Feature Extraction","authors":"Kazi Safayet Md. Shabbir, Md Imteaz Ahmed, Marzan Alam","doi":"10.38032/jea.2021.03.005","DOIUrl":"https://doi.org/10.38032/jea.2021.03.005","url":null,"abstract":"This research was utilized to identify glaucoma, a type of eye illness. This endeavor necessitates the use of pictures from the fundus camera for image processing. This study reflects the effort done to detect glaucoma-affected eyes utilizing image feature extraction using Oriented FAST and Rotated BRIEF (ORB). ORB is a binary descriptor approach that is based on BRIEF and is highly fast. This technique is insensitive to picture noise and is invariant to any rotation. ORB is two orders of magnitude faster than SURF and performs similarly to SIFT. It is more efficient than other texture analysis methods. It is less computationally difficult than other approaches in the literature. This technique extracts features and detects texture by inspecting each pixel of the retina picture. It was trained on 160 fundus pictures of normal and glaucoma-affected retinas. After that, any healthy or glaucoma-affected eye may be easily recognized by obtaining an accurate eye picture. The results reveal that this technique has a precision and accuracy of more than 90%.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123170798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.38032/jea.2021.03.003
Tasnimul Alam, M. Inam
This study demonstrates the forced convection heat transfer of a water-based nanofluid inside a circular tube with a twisted tape inserter. During these simulations, it was assumed that the tube wall heated with constant heat flux, inlet of the tube had a lower temperature and Titanium Oxide (TiO2) particles were used as nanoparticles for nanofluid mixture. The results depict the effect of some significant parameters, i.e., twist ratio (T.R.), number of twists, Reynolds number, and volume fractions of nanoparticles on the heat transfer characteristics inside the tube with a twisted tape inserter. It is visualized from the numerical results that the Nusselt number (Nu) and heat transfer co-efficient have higher values at the twisted region than the outlet. During this numerical simulation, the Reynolds number (Re), volume fractions of particles, and twist ratios were varied into the range from 100 to 500, 0 to 0.1, and 1 to 5, respectively. Mixture model conducted these numerical simulations with Direct Numerical Simulation (DNS) method using ANSYS Fluent 16.2 with the help of three-dimensional Navier-Stokes equation. The results depicted for both water and nanofluid, the average Nusselt number and heat transfer co-efficient enhance at lower twist ratios and a higher number of twists. Results also show that Nusselt number and heat transfer coefficient increase with Reynolds Number. The heat transfer characteristics of twisted-tape inserter portion and their differences of those characteristics with the tube outlet were investigated numerically and graphically.
{"title":"Heat Transfer Characteristics Analysis of a Nanofluid in a Tube with a Co-axial Twisted Tape Inserter: A Numerical Approach","authors":"Tasnimul Alam, M. Inam","doi":"10.38032/jea.2021.03.003","DOIUrl":"https://doi.org/10.38032/jea.2021.03.003","url":null,"abstract":"This study demonstrates the forced convection heat transfer of a water-based nanofluid inside a circular tube with a twisted tape inserter. During these simulations, it was assumed that the tube wall heated with constant heat flux, inlet of the tube had a lower temperature and Titanium Oxide (TiO2) particles were used as nanoparticles for nanofluid mixture. The results depict the effect of some significant parameters, i.e., twist ratio (T.R.), number of twists, Reynolds number, and volume fractions of nanoparticles on the heat transfer characteristics inside the tube with a twisted tape inserter. It is visualized from the numerical results that the Nusselt number (Nu) and heat transfer co-efficient have higher values at the twisted region than the outlet. During this numerical simulation, the Reynolds number (Re), volume fractions of particles, and twist ratios were varied into the range from 100 to 500, 0 to 0.1, and 1 to 5, respectively. Mixture model conducted these numerical simulations with Direct Numerical Simulation (DNS) method using ANSYS Fluent 16.2 with the help of three-dimensional Navier-Stokes equation. The results depicted for both water and nanofluid, the average Nusselt number and heat transfer co-efficient enhance at lower twist ratios and a higher number of twists. Results also show that Nusselt number and heat transfer coefficient increase with Reynolds Number. The heat transfer characteristics of twisted-tape inserter portion and their differences of those characteristics with the tube outlet were investigated numerically and graphically.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131186540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}