Pub Date : 2022-09-28DOI: 10.38032/jea.2022.03.006
Sadia Tamanna, Mohammad Sohel Rahman
Asset or equipment reliability and availability have occupied extensive attention because of an emerging competitive environment and the overall operating and production cost. The main focus of this manuscript is to prioritize the lean tool and select an appropriate maintenance strategy for the repairable assets in the maintenance shop of the SIMGA1 shipyard. Five (5) assets of that maintenance shop such as an air compressor machine, 500-ton press machine, overhead crane machine, VDF lathe machine, and Roller machine were under breakdown maintenance. Due to the continuous degradation of those assets, attempts should be taken to enhance the reliability parameters by predicting upcoming failure events for each equipment or asset. QFD-AHP is a rapid tool in which quality function deployment is integrated with AHP to make an optimal selection. Firstly, the integrated QFD-AHP method is employed to prioritize the lean tools for that maintenance shop. 5S and KPI are the best fit for that shop among ten lean tools. Non Homogenous Poisson Process (NHPP) is a model which represents the no. of failure experienced up to time (t). NHPP and Weibull analysis are utilized to predict future failure events and analyzed the nature of the failure accordingly. From the results of the Weibull analysis and NHPP analysis, it is shown that the slope (β) of the failure rate is greater than 1 for all assets. Overhead crane m/c and 500-ton press m/c are the most critical m/c according to equipment criticality analysis. Finally, a decision diagram is utilized to extract the most congruent maintenance strategies based on the reliability parameter of five (5) assets. The approach employed in this study helps maintenance practitioners to achieve lean maintenance.
{"title":"Prioritization of Effective Lean Tools for Reliability Analysis & Maintenance Strategy","authors":"Sadia Tamanna, Mohammad Sohel Rahman","doi":"10.38032/jea.2022.03.006","DOIUrl":"https://doi.org/10.38032/jea.2022.03.006","url":null,"abstract":"Asset or equipment reliability and availability have occupied extensive attention because of an emerging competitive environment and the overall operating and production cost. The main focus of this manuscript is to prioritize the lean tool and select an appropriate maintenance strategy for the repairable assets in the maintenance shop of the SIMGA1 shipyard. Five (5) assets of that maintenance shop such as an air compressor machine, 500-ton press machine, overhead crane machine, VDF lathe machine, and Roller machine were under breakdown maintenance. Due to the continuous degradation of those assets, attempts should be taken to enhance the reliability parameters by predicting upcoming failure events for each equipment or asset. QFD-AHP is a rapid tool in which quality function deployment is integrated with AHP to make an optimal selection. Firstly, the integrated QFD-AHP method is employed to prioritize the lean tools for that maintenance shop. 5S and KPI are the best fit for that shop among ten lean tools. Non Homogenous Poisson Process (NHPP) is a model which represents the no. of failure experienced up to time (t). NHPP and Weibull analysis are utilized to predict future failure events and analyzed the nature of the failure accordingly. From the results of the Weibull analysis and NHPP analysis, it is shown that the slope (β) of the failure rate is greater than 1 for all assets. Overhead crane m/c and 500-ton press m/c are the most critical m/c according to equipment criticality analysis. Finally, a decision diagram is utilized to extract the most congruent maintenance strategies based on the reliability parameter of five (5) assets. The approach employed in this study helps maintenance practitioners to achieve lean maintenance.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127692018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-27DOI: 10.38032/jea.2022.03.005
Selim Hussen, M. Uddin, M. Karim
The Telegraph equation has drawn much attention due to its recent variety of applications in different areas of the communication system. Various methods have been developed to solve the Telegraph equation so far. In this research paper, we have formulated a derivation mathematically for the Telegraph equation for the section of a line of transmission concerning the voltage associated and the current. Therefore, obtained mathematical equation has been solved numerically by COMSOL Multiphysics. We have then numerically analyzed the parametric behavior of the Telegraph equation. The analysis first starts with allowing both the damping coefficients to vary, keeping the transmission velocity fixed, and observing the pulse shape at different time slots. We have then investigated the deformation of the pulse caused due to the gradual increase of transmission velocity for varying damping coefficients at the intended discrete time slots. Finally, we analyzed the behavior of the associated voltage pattern for those variations due to the corresponding distance of the Telegraph wire. We have observed that changes in the damping coefficients have a gradual impact on the associated voltage of the Telegraph equation, which is more conspicuous for the higher time slots. Transmission velocity is found as the most influential parameter of the Telegraph equation that controls the deformation of the pulse height, which is the cardinal part of the inquiry.
{"title":"An Efficient Computational Technique for the Analysis of Telegraph Equation","authors":"Selim Hussen, M. Uddin, M. Karim","doi":"10.38032/jea.2022.03.005","DOIUrl":"https://doi.org/10.38032/jea.2022.03.005","url":null,"abstract":"The Telegraph equation has drawn much attention due to its recent variety of applications in different areas of the communication system. Various methods have been developed to solve the Telegraph equation so far. In this research paper, we have formulated a derivation mathematically for the Telegraph equation for the section of a line of transmission concerning the voltage associated and the current. Therefore, obtained mathematical equation has been solved numerically by COMSOL Multiphysics. We have then numerically analyzed the parametric behavior of the Telegraph equation. The analysis first starts with allowing both the damping coefficients to vary, keeping the transmission velocity fixed, and observing the pulse shape at different time slots. We have then investigated the deformation of the pulse caused due to the gradual increase of transmission velocity for varying damping coefficients at the intended discrete time slots. Finally, we analyzed the behavior of the associated voltage pattern for those variations due to the corresponding distance of the Telegraph wire. We have observed that changes in the damping coefficients have a gradual impact on the associated voltage of the Telegraph equation, which is more conspicuous for the higher time slots. Transmission velocity is found as the most influential parameter of the Telegraph equation that controls the deformation of the pulse height, which is the cardinal part of the inquiry.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117166177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-26DOI: 10.38032/jea.2022.03.004
Mohammed Khalid Hossen
The numerical solution of Navier-Stokes (N-S) equations has been found useful in various disciplines during its development, especially in recent years. However, a large-eddy simulation method has been developed to model the subgrid-scale dissipation rate by closing the Navier-Stokes equations. Because the instantaneous and time-averaged statistic characteristics of the subgrid-scale turbulent kinetic energy and dissipation have been studied by large eddy simulation. The purpose of this study is to check the statistical and machine learning of the subgrid-scale energy dissipation. As we know that the current turbulence theory states that the vortex stretching mechanism transports energy from large to small scales and leads to a high energy dissipation rate in a turbulent flow. Hence, a vortex-stretching-based subgrid-scale model is considered regarding the square of the velocity gradient to detect the playing role of the vortex stretching mechanism. The study in this article has shown a two-step process. Considering a posteriori statistic of the velocity gradient is analyzed through higher-order statistics and joint probability density function. Secondly, a machine learning approach is studied on the same data. The results of the vortex-stretching-based subgrid-scale model are then compared with the other two dynamic subgrid models, such as the localized dynamic kinetic energy equation model and the TKE-based Deardorff model. The results suggest that the vortex-stretching-based model can detect the significant subgrid-scale dissipation of small-scale motions and predict satisfactory turbulence statistics of the velocity gradient tensor.
{"title":"A Study of Large-eddy Simulation using Statistical and Machine Learning Techniques","authors":"Mohammed Khalid Hossen","doi":"10.38032/jea.2022.03.004","DOIUrl":"https://doi.org/10.38032/jea.2022.03.004","url":null,"abstract":"The numerical solution of Navier-Stokes (N-S) equations has been found useful in various disciplines during its development, especially in recent years. However, a large-eddy simulation method has been developed to model the subgrid-scale dissipation rate by closing the Navier-Stokes equations. Because the instantaneous and time-averaged statistic characteristics of the subgrid-scale turbulent kinetic energy and dissipation have been studied by large eddy simulation. The purpose of this study is to check the statistical and machine learning of the subgrid-scale energy dissipation. As we know that the current turbulence theory states that the vortex stretching mechanism transports energy from large to small scales and leads to a high energy dissipation rate in a turbulent flow. Hence, a vortex-stretching-based subgrid-scale model is considered regarding the square of the velocity gradient to detect the playing role of the vortex stretching mechanism. The study in this article has shown a two-step process. Considering a posteriori statistic of the velocity gradient is analyzed through higher-order statistics and joint probability density function. Secondly, a machine learning approach is studied on the same data. The results of the vortex-stretching-based subgrid-scale model are then compared with the other two dynamic subgrid models, such as the localized dynamic kinetic energy equation model and the TKE-based Deardorff model. The results suggest that the vortex-stretching-based model can detect the significant subgrid-scale dissipation of small-scale motions and predict satisfactory turbulence statistics of the velocity gradient tensor.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122117174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-24DOI: 10.38032/jea.2022.03.003
M. A. Malek
This study presents the computed ion beam properties (flux, fluence, and energy) of argon, neon, and nitrogen gases with pressure variation in the spherical plasma focus device, KPU200 SPF. Numerical experiments are performed using the Lee code (version: RADPFV5.16FIB) with the gases in the pressure range of 0.10 - 19 Torr. The electrode geometry has been obtained by applying the ‘equivalent straightened electrode’ technique. The computed results for each of the gases show that the ion beam properties increase with the increase in pressure until reach a peak value and then start to reduce with further pressure increase. The peak ion beam flux (ions m-2 s-1), fluence (ions m-2), and energy (J) from heavier argon pinch plasma are found as 5.31 × 1027 at 2 Torr, 8.93 × 1020 at 3.5 Torr, and 3.46 × 104 at 3 Torr, respectively which are the utmost values from neon and nitrogen gases. Significant correlations of pinch radius and duration, effective charge number, and induced voltage with these ion beam properties are noticed and discussed in this paper. The obtained results of this study are compared with those of the NX2 plasma focus device that makes the consistency of the present research work.
{"title":"Characteristics of Ion Beam for Various Gases in a Spherical Plasma Focus Device","authors":"M. A. Malek","doi":"10.38032/jea.2022.03.003","DOIUrl":"https://doi.org/10.38032/jea.2022.03.003","url":null,"abstract":"This study presents the computed ion beam properties (flux, fluence, and energy) of argon, neon, and nitrogen gases with pressure variation in the spherical plasma focus device, KPU200 SPF. Numerical experiments are performed using the Lee code (version: RADPFV5.16FIB) with the gases in the pressure range of 0.10 - 19 Torr. The electrode geometry has been obtained by applying the ‘equivalent straightened electrode’ technique. The computed results for each of the gases show that the ion beam properties increase with the increase in pressure until reach a peak value and then start to reduce with further pressure increase. The peak ion beam flux (ions m-2 s-1), fluence (ions m-2), and energy (J) from heavier argon pinch plasma are found as 5.31 × 1027 at 2 Torr, 8.93 × 1020 at 3.5 Torr, and 3.46 × 104 at 3 Torr, respectively which are the utmost values from neon and nitrogen gases. Significant correlations of pinch radius and duration, effective charge number, and induced voltage with these ion beam properties are noticed and discussed in this paper. The obtained results of this study are compared with those of the NX2 plasma focus device that makes the consistency of the present research work.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131856404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-08DOI: 10.38032/jea.2022.03.002
Sharmin Sultana Toa, Alamtar Ali
Bhola, the largest island of Bangladesh located at the estuarine mouth bar of the Bay of Bengal is very dynamic and unique in nature due to its physiographical configurations and is experienced severe morphological i.e. erosion- accretion changes. Of late, monitoring of coastal morphology and changes in shoreline trend analysis has conveniently been done through the integration of remote sensing satellite imageries and GIS techniques. The present study is an endeavor to detect and analyze the morphological changes on Bhola Island. Multi-temporal satellite images are the main data sources to attain the objectives through the integration of RS and GIS. The study concludes from the recent 42 years (1974- 2016) satellite data that- the Island is in the losing phase since 1974. The erosion processes are still active along the eastern and northeastern parts of Bhola Island due to the direct influence of the Meghna Estuary on the land by the steep bank slope, high tidal water pressure, and loose bank materials. Erosion is the burning issue on Bhola Island and due to this a large number of people are landless every year. On another side, accretion is being operated in a large part surrounding the Island increasingly in the southern part due to backwash sediment deposition by channel and estuary with the favor of a gentle topographic slope along the bank.
{"title":"A Remote Sensing-Based Approach to Identifying Spatio-Temporal Changes in Coastal Morphology in Bhola District, Bangladesh","authors":"Sharmin Sultana Toa, Alamtar Ali","doi":"10.38032/jea.2022.03.002","DOIUrl":"https://doi.org/10.38032/jea.2022.03.002","url":null,"abstract":"Bhola, the largest island of Bangladesh located at the estuarine mouth bar of the Bay of Bengal is very dynamic and unique in nature due to its physiographical configurations and is experienced severe morphological i.e. erosion- accretion changes. Of late, monitoring of coastal morphology and changes in shoreline trend analysis has conveniently been done through the integration of remote sensing satellite imageries and GIS techniques. The present study is an endeavor to detect and analyze the morphological changes on Bhola Island. Multi-temporal satellite images are the main data sources to attain the objectives through the integration of RS and GIS. The study concludes from the recent 42 years (1974- 2016) satellite data that- the Island is in the losing phase since 1974. The erosion processes are still active along the eastern and northeastern parts of Bhola Island due to the direct influence of the Meghna Estuary on the land by the steep bank slope, high tidal water pressure, and loose bank materials. Erosion is the burning issue on Bhola Island and due to this a large number of people are landless every year. On another side, accretion is being operated in a large part surrounding the Island increasingly in the southern part due to backwash sediment deposition by channel and estuary with the favor of a gentle topographic slope along the bank.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130172425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-10DOI: 10.38032/jea.2022.03.001
A. Khairy, Islam Mohammed, M. Ahmed, M. M. Elsherbini
With the development of telecommunications and its applications, the design of compact antennas with high performance has become a great necessity. Among the important requirements is a high gain. In this article, a microstrip patch antenna using near zero-index metamaterial (NZIM) is proposed. This prototype is designed with the designing parameters of a rectangular microstrip patch antenna. The substrate material is FR-4. Simulation results show that this antenna operates at 5.8 GHz for a wireless local area network (WLAN). The proposed single antenna element achieves side-lobe suppression better than -13 dB. The 4×4 proposed antenna array is designed using 16 single elements and a T-shaped power divider to split power for each element. By covering a single-layer NZIM coating with a 4×4 array over a microstrip antenna, a gain enhancement of 14 dB is achieved in comparison with the single element. Over the operating band, the antenna prototype demonstrates steady radiation patterns. These characteristics are in good agreement with the simulations, rendering the antenna a good candidate for 5G applications. These antennas are designed, optimized, and simulated using CSTMWS2020.
{"title":"The Design of a Superstate NZIM-Antenna Array for WLAN Application","authors":"A. Khairy, Islam Mohammed, M. Ahmed, M. M. Elsherbini","doi":"10.38032/jea.2022.03.001","DOIUrl":"https://doi.org/10.38032/jea.2022.03.001","url":null,"abstract":"With the development of telecommunications and its applications, the design of compact antennas with high performance has become a great necessity. Among the important requirements is a high gain. In this article, a microstrip patch antenna using near zero-index metamaterial (NZIM) is proposed. This prototype is designed with the designing parameters of a rectangular microstrip patch antenna. The substrate material is FR-4. Simulation results show that this antenna operates at 5.8 GHz for a wireless local area network (WLAN). The proposed single antenna element achieves side-lobe suppression better than -13 dB. The 4×4 proposed antenna array is designed using 16 single elements and a T-shaped power divider to split power for each element. By covering a single-layer NZIM coating with a 4×4 array over a microstrip antenna, a gain enhancement of 14 dB is achieved in comparison with the single element. Over the operating band, the antenna prototype demonstrates steady radiation patterns. These characteristics are in good agreement with the simulations, rendering the antenna a good candidate for 5G applications. These antennas are designed, optimized, and simulated using CSTMWS2020.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130181029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.38032/jea.2022.02.004
Md. Readul Mahmud
Passive mixers rely on the channel geometry to mix fluids and mixing depends primarily on diffusion. However, many previously reported designs either work efficiently only at moderate to high Reynolds numbers (Re) or require a complex 3D channel geometry that is often difficult to fabricate. In this paper, we report the design, simulation, and characterization of a planar O passive microfluidic mixer with two types of obstacles to enhance mixing performance. Numerical investigation on mixing and flow structures in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15 for a wide range of Reynolds numbers from 1 to 200. The results show that the O mixer with obstacles has far better mixing performance than the O mixer without obstacles. The reason is that fluid path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the O mixer with circular & fin obstacles have 3 times more efficient compared to the O mixer without obstacles. It is also clear that efficiency increase with axial length as expected. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the O mixer because there is no obstacle inside the channel. However, the O mixer with circular & fin obstacles has the lowest mixing cost, an important characteristic for integration into complex, cascading microfluidic systems, which makes it the most cost-effective mixer. Due to the simple planar structure and low mixing cost, it can be easily realized and integrated into devices for various macromixing applications.
{"title":"Numerical Analysis of a Planar O Micromixer with Obstacles","authors":"Md. Readul Mahmud","doi":"10.38032/jea.2022.02.004","DOIUrl":"https://doi.org/10.38032/jea.2022.02.004","url":null,"abstract":"Passive mixers rely on the channel geometry to mix fluids and mixing depends primarily on diffusion. However, many previously reported designs either work efficiently only at moderate to high Reynolds numbers (Re) or require a complex 3D channel geometry that is often difficult to fabricate. In this paper, we report the design, simulation, and characterization of a planar O passive microfluidic mixer with two types of obstacles to enhance mixing performance. Numerical investigation on mixing and flow structures in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15 for a wide range of Reynolds numbers from 1 to 200. The results show that the O mixer with obstacles has far better mixing performance than the O mixer without obstacles. The reason is that fluid path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the O mixer with circular & fin obstacles have 3 times more efficient compared to the O mixer without obstacles. It is also clear that efficiency increase with axial length as expected. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the O mixer because there is no obstacle inside the channel. However, the O mixer with circular & fin obstacles has the lowest mixing cost, an important characteristic for integration into complex, cascading microfluidic systems, which makes it the most cost-effective mixer. Due to the simple planar structure and low mixing cost, it can be easily realized and integrated into devices for various macromixing applications.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114734314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-23DOI: 10.38032/jea.2022.02.003
M. Mahmud, Fahim Rahaman Rijvi
In the present study, the thermal performance of a simple car radiator has been investigated for different conditions such as coolant type and coolant inlet velocity. Different types of nanofluids have been used as coolants such as Al2O3, CuO, and TiO2 nanofluids. The base fluids taken are water and 50-50 volume percentage of water and ethylene glycol (EG) mixture. The volume percentage of 1%, 2%, and 3% of nanoparticles has been used for all the cases. The lowest outlet temperature and highest heat transfer rate are found for Water-EG based nanofluids. The lowest coolant outlet temperature (355.91 K) is found for 3 vol% of Water-EG based TiO2 nanofluid and the highest heat transfer rate (67.87 W) is found for 3 vol% of Water-EG based CuO nanofluid. The highest outlet temperature and the lowest heat transfer rate are found to be 358.50 K and 51.73 W respectively for water-based CuO nanofluid. Nonetheless, the Water-EG based nanofluids showed better results than water-based nanofluids showing a low coolant outlet temperature and a high heat transfer rate.
{"title":"Enhancing the Thermal Performance of Radiators using Nanofluids- A CFD Approach","authors":"M. Mahmud, Fahim Rahaman Rijvi","doi":"10.38032/jea.2022.02.003","DOIUrl":"https://doi.org/10.38032/jea.2022.02.003","url":null,"abstract":"In the present study, the thermal performance of a simple car radiator has been investigated for different conditions such as coolant type and coolant inlet velocity. Different types of nanofluids have been used as coolants such as Al2O3, CuO, and TiO2 nanofluids. The base fluids taken are water and 50-50 volume percentage of water and ethylene glycol (EG) mixture. The volume percentage of 1%, 2%, and 3% of nanoparticles has been used for all the cases. The lowest outlet temperature and highest heat transfer rate are found for Water-EG based nanofluids. The lowest coolant outlet temperature (355.91 K) is found for 3 vol% of Water-EG based TiO2 nanofluid and the highest heat transfer rate (67.87 W) is found for 3 vol% of Water-EG based CuO nanofluid. The highest outlet temperature and the lowest heat transfer rate are found to be 358.50 K and 51.73 W respectively for water-based CuO nanofluid. Nonetheless, the Water-EG based nanofluids showed better results than water-based nanofluids showing a low coolant outlet temperature and a high heat transfer rate.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125864253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-06DOI: 10.38032/jea.2022.02.002
Adekunle N. Adefela, Y. Olasoji, K. Adedeji
In this era, there are several multimedia applications have been developed. These multimedia applications occupy more bandwidth, thus resulting in the scarcity of frequency spectrum necessary to cater to the bandwidth requirements of these applications. The scarcity may also stem from the licensed spectrum being under-utilized. The unused licensed frequency spectrum in the TV band is known as TV white space. In the coming years, which are expected to feature improved multimedia applications, the need for optimal frequency spectrum utilization of the unused licensed spectrum becomes necessary. This study evaluates the availability of Television White Space (TVWS) in Ondo State radio vision-television station in Akure, south western Nigeria. Outdoor spectrum measurement was carried out in the frequency bands of the licensed networks ranging from 470 MHz – 960MHz. Measurement and computational approach using tiny spectrum Analyzer and protection viewpoint computational method was used for easy detection and analysis of the unused spectrum as well as calculating the radius of protection of the primary user. The study permits the assessment of Radio Frequency (RF) Spectrum in the UHF band in Akure and its environments, as well as providing measures for harnessing the unused RF resources. The results obtained show that 71.05% of the 38 channels were unused. The rate of spectrum occupancy was discovered to be very low, thus giving room for unused spectrum spaces in the UHF frequency band which can be used to provide security surveillance.
{"title":"Evaluation of TVWS Availability: A Step Towards Frequency Spectrum Utilization","authors":"Adekunle N. Adefela, Y. Olasoji, K. Adedeji","doi":"10.38032/jea.2022.02.002","DOIUrl":"https://doi.org/10.38032/jea.2022.02.002","url":null,"abstract":"In this era, there are several multimedia applications have been developed. These multimedia applications occupy more bandwidth, thus resulting in the scarcity of frequency spectrum necessary to cater to the bandwidth requirements of these applications. The scarcity may also stem from the licensed spectrum being under-utilized. The unused licensed frequency spectrum in the TV band is known as TV white space. In the coming years, which are expected to feature improved multimedia applications, the need for optimal frequency spectrum utilization of the unused licensed spectrum becomes necessary. This study evaluates the availability of Television White Space (TVWS) in Ondo State radio vision-television station in Akure, south western Nigeria. Outdoor spectrum measurement was carried out in the frequency bands of the licensed networks ranging from 470 MHz – 960MHz. Measurement and computational approach using tiny spectrum Analyzer and protection viewpoint computational method was used for easy detection and analysis of the unused spectrum as well as calculating the radius of protection of the primary user. The study permits the assessment of Radio Frequency (RF) Spectrum in the UHF band in Akure and its environments, as well as providing measures for harnessing the unused RF resources. The results obtained show that 71.05% of the 38 channels were unused. The rate of spectrum occupancy was discovered to be very low, thus giving room for unused spectrum spaces in the UHF frequency band which can be used to provide security surveillance.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124825854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-02DOI: 10.38032/jea.2022.02.001
Hrithita Aftab, G. Rahman, M. Kamruzzaman, M. Khan, M. Ali, M. A. Mamun
The industrial tea waste reinforced jute polyester composites (ITW-JPC) were prepared by hand lay-up method for six different wt% (0%, 3%, 6%, 9%, 12%, and 15%) at 115˚C temperature. The effect of industrial tea waste filler on mechanical, physical, structural, and thermal properties in jute polyester composites were evaluated. It is found that tensile strength and flexural strength improved continuously with increasing filler loading up to 9wt% but decreased at 12wt% due to weak interfacial bonding and irregular distribution of filler and matrix. The maximum value of elongation at break (%) and Rockwell hardness were found in 0wt% and 15wt% composites respectively. The hardness increases when the resistance of the materials to the deformation increases. It is seen that water absorption and soil degradation are enhanced for all composites with the accumulation of filler content and time. The structural examination and functional group identification were investigated by using Fourier Transformation Infrared (FTIR) analysis. Thermal analysis of ITW-JPC showed that thermal degradation of composites started almost at the same time and the degradation of composites was occurring in three stages. Surface morphology and interfacial properties such as internal cracks, and fiber pull-out were examined through scanning electron microscopic (SEM) analysis.
{"title":"Physico-Mechanical Properties of Industrial Tea Waste Reinforced Jute Unsaturated Polyester Composites","authors":"Hrithita Aftab, G. Rahman, M. Kamruzzaman, M. Khan, M. Ali, M. A. Mamun","doi":"10.38032/jea.2022.02.001","DOIUrl":"https://doi.org/10.38032/jea.2022.02.001","url":null,"abstract":"The industrial tea waste reinforced jute polyester composites (ITW-JPC) were prepared by hand lay-up method for six different wt% (0%, 3%, 6%, 9%, 12%, and 15%) at 115˚C temperature. The effect of industrial tea waste filler on mechanical, physical, structural, and thermal properties in jute polyester composites were evaluated. It is found that tensile strength and flexural strength improved continuously with increasing filler loading up to 9wt% but decreased at 12wt% due to weak interfacial bonding and irregular distribution of filler and matrix. The maximum value of elongation at break (%) and Rockwell hardness were found in 0wt% and 15wt% composites respectively. The hardness increases when the resistance of the materials to the deformation increases. It is seen that water absorption and soil degradation are enhanced for all composites with the accumulation of filler content and time. The structural examination and functional group identification were investigated by using Fourier Transformation Infrared (FTIR) analysis. Thermal analysis of ITW-JPC showed that thermal degradation of composites started almost at the same time and the degradation of composites was occurring in three stages. Surface morphology and interfacial properties such as internal cracks, and fiber pull-out were examined through scanning electron microscopic (SEM) analysis.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117184041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}