首页 > 最新文献

ACS Physical Chemistry Au最新文献

英文 中文
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-23
Squire J. Booker, Stephanie L. Brock, Xiangdong Li, Géraldine Masson, Sébastien Perrier, Vivek V. Ranade, Raymond E. Schaak, Gemma C. Solomon and Shelley D. Minteer*, 
{"title":"","authors":"Squire J. Booker, Stephanie L. Brock, Xiangdong Li, Géraldine Masson, Sébastien Perrier, Vivek V. Ranade, Raymond E. Schaak, Gemma C. Solomon and Shelley D. Minteer*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.5c00050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144678647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-23
Samuel Wohl*, Yishai Gilron and Wenwei Zheng*, 
{"title":"","authors":"Samuel Wohl*, Yishai Gilron and Wenwei Zheng*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.5c00005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144678643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-23
Adam H. Kensinger, Joseph A. Makowski, Mihaela Rita Mihailescu and Jeffrey D. Evanseck*, 
{"title":"","authors":"Adam H. Kensinger, Joseph A. Makowski, Mihaela Rita Mihailescu and Jeffrey D. Evanseck*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.5c00031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144678639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-23
Sofía Municio, Sergio Mato, José L. Alonso, Elena R. Alonso and Iker León*, 
{"title":"","authors":"Sofía Municio, Sergio Mato, José L. Alonso, Elena R. Alonso and Iker León*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.4c00108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144678645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-23
Mohamad Toutounji*, 
{"title":"","authors":"Mohamad Toutounji*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.4c00085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144678637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 3.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-23
Sebastian Baumgart*, Axel Groß and Mohsen Sotoudeh*, 
{"title":"","authors":"Sebastian Baumgart*, Axel Groß and Mohsen Sotoudeh*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":3.7,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsphyschemau.5c00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144678638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Structural and Electrochemical Properties of Supercapacitors with Graphene Electrodes and Hydrated Pure or Mixed [bmim]-Based Ionic Liquids via Molecular Dynamics. 基于分子动力学的石墨烯电极和水合纯或混合[bmim]基离子液体超级电容器结构和电化学性能评价
IF 4.3 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-15 eCollection Date: 2025-09-24 DOI: 10.1021/acsphyschemau.5c00036
Lucas de S Silva, Guilherme Colherinhas

This study investigates the effect of anion composition on the performance of supercapacitors (SCs) using hydrated ionic liquids and graphene electrodes, focusing on comparing pure and mixed electrolytes. Systems containing [bmim] paired with NO3 -, ClO4 -, and Br- were evaluated to assess their impact on electric double layer (EDL) formation and electrochemical behavior. Molecular dynamics (MD) simulations were performed under varying surface polarization, focusing on interaction energies, species distribution, capacitance, and projected energy density. Capacitance values ranged from 2.30 to 2.55 μF/cm2, while energy densities varied between 5.03 and 5.58 J/g, depending on electrolyte composition. The results show that small, mobile anions like Br- promote more compact EDLs and higher capacitance, even with weak electrode interactions. NO3 - contributes to interfacial organization through hydrogen bonding with water. Mixed anion systems demonstrated competitive performance, with the best results obtained by combining high ion mobility and structural organization. This suggests that hybrid electrolytes are a promising strategy for optimizing energy storage in ionic liquid-based SCs.

本研究研究了阴离子组成对使用水合离子液体和石墨烯电极的超级电容器(SCs)性能的影响,重点比较了纯电解质和混合电解质。研究人员对含有[bmim]与NO3 -、ClO4 -和Br-配对的体系进行了评估,以评估它们对双电层(EDL)形成和电化学行为的影响。在不同的表面极化条件下进行分子动力学(MD)模拟,重点关注相互作用能、物质分布、电容和投射能量密度。电容值在2.30 ~ 2.55 μF/cm2之间,能量密度在5.03 ~ 5.58 J/g之间。结果表明,即使在弱电极相互作用下,像Br-这样的小而可移动的阴离子也能促进更紧凑的edl和更高的电容。NO3 -通过与水的氢键作用促进界面组织。混合阴离子体系表现出竞争性能,通过结合高离子迁移率和结构组织获得最佳结果。这表明混合电解质是一种很有前途的优化离子液体电池储能的策略。
{"title":"Evaluation of Structural and Electrochemical Properties of Supercapacitors with Graphene Electrodes and Hydrated Pure or Mixed [bmim]-Based Ionic Liquids via Molecular Dynamics.","authors":"Lucas de S Silva, Guilherme Colherinhas","doi":"10.1021/acsphyschemau.5c00036","DOIUrl":"10.1021/acsphyschemau.5c00036","url":null,"abstract":"<p><p>This study investigates the effect of anion composition on the performance of supercapacitors (SCs) using hydrated ionic liquids and graphene electrodes, focusing on comparing pure and mixed electrolytes. Systems containing [bmim] paired with NO<sub>3</sub> <sup>-</sup>, ClO<sub>4</sub> <sup>-</sup>, and Br<sup>-</sup> were evaluated to assess their impact on electric double layer (EDL) formation and electrochemical behavior. Molecular dynamics (MD) simulations were performed under varying surface polarization, focusing on interaction energies, species distribution, capacitance, and projected energy density. Capacitance values ranged from 2.30 to 2.55 μF/cm<sup>2</sup>, while energy densities varied between 5.03 and 5.58 J/g, depending on electrolyte composition. The results show that small, mobile anions like Br<sup>-</sup> promote more compact EDLs and higher capacitance, even with weak electrode interactions. NO<sub>3</sub> <sup>-</sup> contributes to interfacial organization through hydrogen bonding with water. Mixed anion systems demonstrated competitive performance, with the best results obtained by combining high ion mobility and structural organization. This suggests that hybrid electrolytes are a promising strategy for optimizing energy storage in ionic liquid-based SCs.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 5","pages":"519-532"},"PeriodicalIF":4.3,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145186930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing the Tutorial Manuscript Type at the ACS Au Community Journals 介绍ACS Au社区期刊的教程稿件类型。
IF 4.3 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-10 DOI: 10.1021/acsphyschemau.5c00050
Squire J. Booker, Stephanie L. Brock, Xiangdong Li, Géraldine Masson, Sébastien Perrier, Vivek V. Ranade, Raymond E. Schaak, Gemma C. Solomon and Shelley D. Minteer*, 
{"title":"Introducing the Tutorial Manuscript Type at the ACS Au Community Journals","authors":"Squire J. Booker,&nbsp;Stephanie L. Brock,&nbsp;Xiangdong Li,&nbsp;Géraldine Masson,&nbsp;Sébastien Perrier,&nbsp;Vivek V. Ranade,&nbsp;Raymond E. Schaak,&nbsp;Gemma C. Solomon and Shelley D. Minteer*,&nbsp;","doi":"10.1021/acsphyschemau.5c00050","DOIUrl":"10.1021/acsphyschemau.5c00050","url":null,"abstract":"","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 4","pages":"316–317"},"PeriodicalIF":4.3,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12291126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144733640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale and Element-Specific Lattice Temperature Measurements Using Core-Loss Electron Energy-Loss Spectroscopy. 纳米尺度和元素特定晶格温度测量使用核损失电子能量损失光谱。
IF 4.3 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-07-07 eCollection Date: 2025-11-26 DOI: 10.1021/acsphyschemau.5c00044
Levi D Palmer, Wonseok Lee, Daniel B Durham, Javier Fajardo, Yuzi Liu, A Alec Talin, Thomas E Gage, Scott K Cushing

Measuring nanoscale local temperatures, particularly in vertically integrated and multicomponent systems, remains challenging. Spectroscopic techniques like X-ray absorption and core-loss electron energy-loss spectroscopy (EELS) are sensitive to lattice temperature, but understanding thermal effects is nontrivial. This work explores the potential for nanoscale and element-specific core-loss thermometry by comparing the Si L2,3 edge's temperature-dependent redshift against plasmon energy expansion thermometry (PEET) in a scanning TEM. Using density functional theory (DFT), time-dependent DFT, and the Bethe-Salpeter equation, we ab initio model both the Si L2,3 and plasmon redshift. We find that the core-loss redshift occurs due to bandgap reduction from electron-phonon renormalization. Our results indicate that despite lower core-loss signal intensity compared to plasmon features, core-loss thermometry has key advantages and can be more accurate through standard spectral denoising. Specifically, we show that the Varshni equation easily interprets the core-loss redshift for semiconductors, which avoids plasmon spectral convolution for PEET in complex junctions and interfaces. We also find that core-loss thermometry is more accurate than PEET at modeling thermal lattice expansion in semiconductors, unless the specimen's temperature-dependent dielectric properties are fully characterized. Furthermore, core-loss thermometry has the potential to measure nanoscale heating in multicomponent materials and stacked interfaces with elemental specificity at length scales smaller than the plasmon's wave function.

测量纳米尺度的局部温度,特别是在垂直集成和多组分系统中,仍然具有挑战性。像x射线吸收和核心损失电子能量损失光谱(EELS)这样的光谱技术对晶格温度很敏感,但是理解热效应是不容易的。这项工作通过比较扫描TEM中Si L2,3边缘的温度依赖红移和等离子体能量膨胀测温(PEET),探索了纳米尺度和元素特定核心损耗测温的潜力。利用密度泛函理论(DFT)、时变DFT和Bethe-Salpeter方程,我们从头开始建立了Si L2、3和等离子体激元红移的模型。我们发现,由于电子-声子重整化导致带隙减小,导致了核心损耗红移。我们的研究结果表明,尽管与等离子体特征相比,核心损耗信号强度较低,但核心损耗测温具有关键优势,并且通过标准光谱去噪可以更准确。具体来说,我们表明Varshni方程很容易解释半导体的核心损耗红移,从而避免了复杂结和界面中PEET的等离子体光谱卷积。我们还发现,在模拟半导体中的热晶格膨胀时,核心损耗测温法比PEET更准确,除非样品的温度相关介电特性得到充分表征。此外,核心损耗测温法有可能测量多组分材料和具有元素特异性的堆叠界面的纳米级加热,其长度尺度小于等离子体激元的波函数。
{"title":"Nanoscale and Element-Specific Lattice Temperature Measurements Using Core-Loss Electron Energy-Loss Spectroscopy.","authors":"Levi D Palmer, Wonseok Lee, Daniel B Durham, Javier Fajardo, Yuzi Liu, A Alec Talin, Thomas E Gage, Scott K Cushing","doi":"10.1021/acsphyschemau.5c00044","DOIUrl":"10.1021/acsphyschemau.5c00044","url":null,"abstract":"<p><p>Measuring nanoscale local temperatures, particularly in vertically integrated and multicomponent systems, remains challenging. Spectroscopic techniques like X-ray absorption and core-loss electron energy-loss spectroscopy (EELS) are sensitive to lattice temperature, but understanding thermal effects is nontrivial. This work explores the potential for nanoscale and element-specific core-loss thermometry by comparing the Si L<sub>2,3</sub> edge's temperature-dependent redshift against plasmon energy expansion thermometry (PEET) in a scanning TEM. Using density functional theory (DFT), time-dependent DFT, and the Bethe-Salpeter equation, we ab initio model both the Si L<sub>2,3</sub> and plasmon redshift. We find that the core-loss redshift occurs due to bandgap reduction from electron-phonon renormalization. Our results indicate that despite lower core-loss signal intensity compared to plasmon features, core-loss thermometry has key advantages and can be more accurate through standard spectral denoising. Specifically, we show that the Varshni equation easily interprets the core-loss redshift for semiconductors, which avoids plasmon spectral convolution for PEET in complex junctions and interfaces. We also find that core-loss thermometry is more accurate than PEET at modeling thermal lattice expansion in semiconductors, unless the specimen's temperature-dependent dielectric properties are fully characterized. Furthermore, core-loss thermometry has the potential to measure nanoscale heating in multicomponent materials and stacked interfaces with elemental specificity at length scales smaller than the plasmon's wave function.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 6","pages":"589-598"},"PeriodicalIF":4.3,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12670277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145670011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Monte Carlo Approaches to Na Intercalation on Bilayer Graphene. 双层石墨烯上Na嵌入的量子蒙特卡罗方法。
IF 4.3 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-06-25 eCollection Date: 2025-09-24 DOI: 10.1021/acsphyschemau.5c00025
Hyeondeok Shin, Anouar Benali, Christopher S Johnson

We have performed Quantum Monte Carlo (QMC) simulations on Na-intercalated bilayer graphene to study the evolution of electronic and optical properties upon Na intercalation into hard carbon layers. The objective was to model the optimal configuration of Na intercalation into a hard carbon matrix containing graphene regions. Our study showed that Na intercalation can be energetically stabilized at large interlayer distances (over 6 Å) in both AA- and AB-stacked bilayer graphene. In the QMC results, we found a significant band gap opening at the equilibrium interlayer distance of Na-intercalated bilayer graphene, while corresponding density functional theory (DFT) results showed no gap. This difference between DFT and QMC results indicates that the gap opening induced by Na intercalation into a hard carbon is underestimated within the DFT framework. In addition, a zigzag configuration of Na atoms was found to be energetically stable at interlayer distances up to 10 Å, leading us to predict the existence of a local minimum of Na intercalation at large interlayer distance. These computation and modeling results can provide guidance on how to synthesize and optimize hard carbon with bilayer graphene regions that permit a zigzag intercalation configuration that will maximize and stabilize sodium hosting.

我们对Na嵌入双层石墨烯进行了量子蒙特卡罗(QMC)模拟,以研究Na嵌入硬碳层时电子和光学性质的演变。目的是模拟钠嵌入到含有石墨烯区域的硬碳基体中的最佳配置。我们的研究表明,在AA-和ab -堆叠的双层石墨烯中,Na嵌入可以在较大的层间距离(超过6 Å)上能量稳定。在QMC结果中,我们发现在na嵌入双层石墨烯的平衡层间距离处有明显的带隙开放,而相应的密度泛函理论(DFT)结果没有显示带隙。DFT和QMC结果之间的差异表明,在DFT框架内,Na嵌入硬碳引起的间隙打开被低估了。此外,发现Na原子的锯齿形结构在层间距离达到10 Å时能量稳定,这使我们预测在大层间距离处存在Na嵌入的局部最小值。这些计算和建模结果可以为如何合成和优化具有双层石墨烯区域的硬碳提供指导,这些双层石墨烯区域允许锯齿形嵌入配置,从而最大化和稳定钠承载。
{"title":"Quantum Monte Carlo Approaches to Na Intercalation on Bilayer Graphene.","authors":"Hyeondeok Shin, Anouar Benali, Christopher S Johnson","doi":"10.1021/acsphyschemau.5c00025","DOIUrl":"10.1021/acsphyschemau.5c00025","url":null,"abstract":"<p><p>We have performed Quantum Monte Carlo (QMC) simulations on Na-intercalated bilayer graphene to study the evolution of electronic and optical properties upon Na intercalation into hard carbon layers. The objective was to model the optimal configuration of Na intercalation into a hard carbon matrix containing graphene regions. Our study showed that Na intercalation can be energetically stabilized at large interlayer distances (over 6 Å) in both AA- and AB-stacked bilayer graphene. In the QMC results, we found a significant band gap opening at the equilibrium interlayer distance of Na-intercalated bilayer graphene, while corresponding density functional theory (DFT) results showed no gap. This difference between DFT and QMC results indicates that the gap opening induced by Na intercalation into a hard carbon is underestimated within the DFT framework. In addition, a zigzag configuration of Na atoms was found to be energetically stable at interlayer distances up to 10 Å, leading us to predict the existence of a local minimum of Na intercalation at large interlayer distance. These computation and modeling results can provide guidance on how to synthesize and optimize hard carbon with bilayer graphene regions that permit a zigzag intercalation configuration that will maximize and stabilize sodium hosting.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 5","pages":"478-489"},"PeriodicalIF":4.3,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464765/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145186982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Physical Chemistry Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1