Context: The problem of correcting immune system function and compensating for co-morbidities becomes particularly clinically significant in the post-COVID period. There is evidence that certain trace elements in the human body, particularly zinc ions, play a critical role in restoring the function of the immune system and internal organs. Objective: To analyze the mechanisms of zinc action maintaining the body homeostasis in order to justify pathogenetically the inclusion of zinc drugs in the therapy of patients in the post-COVID period. Methods: Data from Elsevier, Global Health, PubMed-NCBI, Embase, MEDLINE, Scopus, Research gate, RSCI Scopus, Cochrane Library, Google Academy, e-LIBRARY.RU and CyberLeninka were used. Results: This review showed that the importance of zinc in maintaining body homeostasis in the post-COVID period is determined by its multifaceted effect on all parts of the immune system, its anti-inflammatory activity, antimicrobial properties and participation in the restoration of internal organ function. Elimination of zinc deficiency in the post-COVID period is essential to support immunity, compensate for comorbidities and reduce the risk of complications. The impossibility of synthesizing zinc in the body requires its constant intake in sufficient quantities. Zinc levels are significantly reduced after infectious diseases, as this element is specifically distributed to organs and tissues to maintain immunological and metabolic functions. The degree of zinc deficiency is associated with the severity of COVID-19 and the post-COVID period. It is pathogenetically justified to prescribe zinc drugs in the post-COVID period, the choice of which should take into account comorbidities and severity of hypozincemia. Conclusion: Regularly administered therapy with zinc drugs in the post-COVID period will help correct the population immunity and restore public health.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that have been linked to a number of health outcomes, including those related to immune dysfunction. However, there are limited numbers of epidemiological-based studies that directly examine the association between PFAS exposure and immune responses.
In this cross-sectional study nested in the California Teachers Study cohort, we measured nine PFAS analytes in serum. Of the 9 analytes, we further evaluated four (PFHxS [perfluorohexane sulfonate], PFNA [perfluorononanoic acid], PFOA [perfluorooctanoic acid], PFOS [perfluorooctanesulfonic acid]) that had detection levels of > 80 %, in relation to 16 systemic inflammatory/immune markers and corresponding immune pathways (Th1 [pro-inflammatory/macrophage activation], B-cell activation, and T-cell activation). Study participants (n = 722) were female, completed a questionnaire regarding various health measures and behaviors, and donated a blood sample between 2013–2016. The association between PFAS analytes and individual immune markers and pathways were evaluated by calculating odds ratios (OR) and 95 % confidence intervals (CI) in a logistic regression model. PFAS analytes were evaluated both as a dichotomous exposure (above or below the respective median) and as a continuous variable (per 1 unit increase [ng/mL]).
The prevalence of detecting any PFAS analyte rose with increasing age, with the highest PFAS prevalence observed among those aged 75 + years and the lowest PFAS prevalence observed among those aged 40–49 years (study participant age range: 40–95 years). Significant associations with BAFF (B-cell activating factor) levels above the median were observed among participants with elevated (defined as above the median) levels of PFHxS (OR=1.53), PFOA (OR=1.43), and PFOS (OR=1.40). Similarly, there were statistically significant associations between elevated levels of PFHxS and TNFRII (tumor necrosis factor receptor 2) levels (OR=1.78) and IL2Rα (interleukin 2 receptor subunit alpha) levels (OR=1.48). We also observed significant inverse associations between elevated PFNA and sCD14 (soluble cluster of differentiation 14) (OR=0.73). No significant associations were observed between elevated PFNA and any immune marker. Evaluation of PFAS exposures as continuous exposures in association with dichotomized cytokines were generally consistent with the dichotomized associations.
PFAS exposure was associated with altered levels of circulating inflammatory/immune markers; the associations were specific to PFAS analyte and immune marker. If validated, our results may suggest potential immune mechanisms underlying associations between the different PFAS analytes and adverse health outcomes.
Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is a proinflammatory cytokine that primarily stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. Over the past years, G-CSF has mainly been used to cure patients with neutropenia and as a part of chemotherapy to induct the remission for refractory/relapse leukemia. Recent studies showed that C-CSF can been used as condition regimens and as a part of preventive methods after allogeneic transplantation to improve the survival of patients and also has immunoregulation, and has promote or inhibit the proliferation of solid tumors. Therefore, in this review, we firstly describe the structure for G-CSF. Then its functions and mechanism were reviewed including the neutrophil mobilization, differentiation, migration, and inhibiting apoptosis of neutrophils, and its immunoregulation. Finally, the clinical applications were further discussed.
IgG4-Related Ophthalmic Disease (IgG4-ROD) is a chronic autoimmune-mediated fibrotic disease that predominantly affects the lacrimal glands, often leading to loss of function in the involved tissues or organs. Recent studies have demonstrated that MMP-12 is highly expressed in IgG4-ROD and plays a significant role in regulating immune responses. In this study, we reviewed nine patients diagnosed with IgG4-ROD based on clinical manifestations and histological analysis, and we investigated the expression of IL-33/ST2 and MMP-12 in IgG4-ROD lacrimal gland tissues using IHC. We found that IL-33 interacts with its specific receptor ST2, both of which are significantly overexpressed in IgG4-ROD tissues. Additionally, we successfully constructed a mouse model by introducing the LatY136F mutation into C57BL/6 mice to mimic IgG4-ROD lacrimal gland involvement, which helped elucidate the mechanisms involved in the induction of MMP-12. Furthermore, immunofluorescence staining confirmed that most MMP-12+ cells were derived from M2 macrophages, and an ELISA assay demonstrated that IL-33 upregulates MMP-12 in IgG4-ROD. Collectively, these data suggest that the IL-33/ST2/MMP-12 signaling pathway is activated in IgG4-ROD, with IL-33/ST2 potentially promoting M2 macrophage polarization and activation to produce MMP-12, which may serve as a novel therapeutic target for IgG4-ROD.
Chimeric antigen receptor (CAR)-T therapy has demonstrated sustained clinical remission in numerous hematologic malignancies and has expanded to encompass solid tumors and autoimmune diseases. While progress is being made in establishing optimal culture conditions for CAR-T cells, the identification of the most effective cytokine for promoting their persistence in vitro remains elusive.
Here, we employed scRNA-seq (single-cell RNA sequencing) analysis to investigate the potential alterations in biological processes within CAR-T cells following exposure to cytokines (IL-2, IL-12, and IL-21) and antigens. Transcriptomic changes in diverse CAR-T groups were compared following various treatments, with a focus on epigenetic modifications, metabolic shifts, cellular senescence, and exhaustion.
Our study reveals that CAR-T cells treated with antigen, IL-2, and IL-12 exhibit signs of exhaustion and senescence, whereas those treated with IL-21 do not display these characteristics. The activities of glycolysis and epigenetic changes were significantly increased by treatments with antigens, IL-2, and IL-12, while IL-21 treatment maintained the oxidative phosphorylation (OXPHOS) of CAR-T cells.
Our findings suggest that IL-21 may play a role in preventing senescence and could be utilized in combination with other strategies, such as IL-2 and IL-12, for CAR-T culture.