Pub Date : 2024-05-28DOI: 10.1021/acsbiomedchemau.4c0001810.1021/acsbiomedchemau.4c00018
Luz C. Mendez, Francis O. Boadi, Mitchell Kennedy, Surita R. Bhatia and Nicole S. Sampson*,
A myriad of biological processes are facilitated by ligand–receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand–receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand–receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.
配体与受体的相互作用促进了无数的生物过程。这些相互作用的亲和力较低,通常通过多价啮合来促进结合。然而,每种生物相互作用都需要配体的独特显示和取向。因此,合成多价探针的可用性和多样性对于配体-受体结合相互作用的研究非常宝贵。在此,我们报告了由双环[4.2.0]辛-6-烯-7-甲酰胺和 4,7-二氢-1,3-二氧杂环庚烷或环己烯制备的聚糖。这些糖聚合物是通过交替开环元合成聚合法合成的,具有精确的配体间距,并可选择疏水或缩醛功能化聚合物骨架。小角 X 射线散射(SAXS)数据分析显示,这些 [4.2.0] 糖聚合物在溶液中具有不同的构象。在水介质中,[4.2.0]-二氧杂环庚烯聚合物形成了具有杆状柔性结构的膨胀聚合物链,而[4.2.0]-环己烯聚合物则具有紧凑的球状结构。为了说明这些聚糖如何有助于探索配体与受体之间的相互作用,我们将[4.2.0]聚糖纳入了一项生物试验,以评估它们作为小鼠精子顶体外渗(AE)激活剂的潜力。生物试验的结果证实,[4.2.0]聚糖的不同结构会引起不同的生物反应;[4.2.0]-环己烯聚糖可诱导小鼠精子的顶体外分泌,而[4.2.0]-二氧杂环庚烷聚糖则不会。在此,我们根据聚合物探针所需的疏水性、刚性和结构构象,提供了两种具有中低分子量分散性和低细胞毒性的糖聚合物选择,可用于生物检测。
{"title":"Glycopolymers Prepared by Alternating Ring-Opening Metathesis Polymerization Provide Access to Distinct, Multivalent Structures for the Probing of Biological Activity","authors":"Luz C. Mendez, Francis O. Boadi, Mitchell Kennedy, Surita R. Bhatia and Nicole S. Sampson*, ","doi":"10.1021/acsbiomedchemau.4c0001810.1021/acsbiomedchemau.4c00018","DOIUrl":"https://doi.org/10.1021/acsbiomedchemau.4c00018https://doi.org/10.1021/acsbiomedchemau.4c00018","url":null,"abstract":"<p >A myriad of biological processes are facilitated by ligand–receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand–receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand–receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 4","pages":"214–225 214–225"},"PeriodicalIF":3.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1021/acsbiomedchemau.4c00018
Luz C. Mendez, Francis O. Boadi, Mitchell Kennedy, Surita R. Bhatia, Nicole S. Sampson
A myriad of biological processes are facilitated by ligand–receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand–receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand–receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.
配体与受体的相互作用促进了无数的生物过程。这些相互作用的亲和力较低,通常通过多价啮合来促进结合。然而,每种生物相互作用都需要配体的独特显示和取向。因此,合成多价探针的可用性和多样性对于配体-受体结合相互作用的研究非常宝贵。在此,我们报告了由双环[4.2.0]辛-6-烯-7-甲酰胺和 4,7-二氢-1,3-二氧杂环庚烷或环己烯制备的聚糖。这些糖聚合物是通过交替开环元合成聚合法合成的,具有精确的配体间距,并可选择疏水或缩醛功能化聚合物骨架。小角 X 射线散射(SAXS)数据分析显示,这些 [4.2.0] 糖聚合物在溶液中具有不同的构象。在水介质中,[4.2.0]-二氧杂环庚烯聚合物形成了具有杆状柔性结构的膨胀聚合物链,而[4.2.0]-环己烯聚合物则具有紧凑的球状结构。为了说明这些聚糖如何有助于探索配体与受体之间的相互作用,我们将[4.2.0]聚糖纳入了一项生物试验,以评估它们作为小鼠精子顶体外渗(AE)激活剂的潜力。生物试验的结果证实,[4.2.0]聚糖的不同结构会引起不同的生物反应;[4.2.0]-环己烯聚糖可诱导小鼠精子的顶体外分泌,而[4.2.0]-二氧杂环庚烷聚糖则不会。在此,我们根据聚合物探针所需的疏水性、刚性和结构构象,提供了两种具有中低分子量分散性和低细胞毒性的糖聚合物选择,可用于生物检测。
{"title":"Glycopolymers Prepared by Alternating Ring-Opening Metathesis Polymerization Provide Access to Distinct, Multivalent Structures for the Probing of Biological Activity","authors":"Luz C. Mendez, Francis O. Boadi, Mitchell Kennedy, Surita R. Bhatia, Nicole S. Sampson","doi":"10.1021/acsbiomedchemau.4c00018","DOIUrl":"https://doi.org/10.1021/acsbiomedchemau.4c00018","url":null,"abstract":"A myriad of biological processes are facilitated by ligand–receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand–receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand–receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1021/acsbiomedchemau.4c00012
Luz C. Mendez, Mitchell Kennedy, Surita R. Bhatia and Nicole S. Sampson*,
Carbohydrate recognition is imperative for the induction of sperm acrosomal exocytosis (AE), an essential phenomenon in mammalian fertilization. In mouse sperm, polynorbornene 100-mers displaying fucose or mannose moieties were effective at inducing AE. In contrast, glycopolymers exhibiting glucose sugars resulted in no AE activation. To further elucidate the role of ligand density on the activation of AE in mouse sperm, a triple-stain flow cytometry assay was employed to determine the efficacy of polynorbornene block copolymers with barbell-like sequences as initiators of AE. Triblock (ABA or ABC) copolymers were synthesized by ring-opening metathesis polymerization (ROMP) with one or two activating sugars, mannose or fucose, and one nonactivating sugar, glucose. The active ligand fractions in the polymers varied from 10, 20, or 40%. Simultaneously, random copolymers comprising 20% activating ligands were prepared to confirm the importance of ligand positionality in AE activation in mouse sperm. Polynorbornene 100-mers possessing two 10-mer blocks of activating sugars were the most effective copolymers at inducing AE with levels of AE comparable to their homopolymer counterparts and more effective than their random analogues. Small-angle X-ray scattering (SAXS) was then performed to verify that there were no differences in the conformations of the glycopolymers contributing to their varying AE activity. SAXS data analysis confirmed that all of the glycopolymers assumed semiflexible cylindrical structures with similar radii and Kuhn lengths. These findings suggest that the overall ligand density of the sugar moieties in the polymer is less important than the positionality of short blocks of high-density ligands for AE activation in mouse sperm.
{"title":"Triblock Glycopolymers with Two 10-mer Blocks of Activating Sugars Enhance the Activation of Acrosomal Exocytosis in Mouse Sperm","authors":"Luz C. Mendez, Mitchell Kennedy, Surita R. Bhatia and Nicole S. Sampson*, ","doi":"10.1021/acsbiomedchemau.4c00012","DOIUrl":"10.1021/acsbiomedchemau.4c00012","url":null,"abstract":"<p >Carbohydrate recognition is imperative for the induction of sperm acrosomal exocytosis (AE), an essential phenomenon in mammalian fertilization. In mouse sperm, polynorbornene 100-mers displaying fucose or mannose moieties were effective at inducing AE. In contrast, glycopolymers exhibiting glucose sugars resulted in no AE activation. To further elucidate the role of ligand density on the activation of AE in mouse sperm, a triple-stain flow cytometry assay was employed to determine the efficacy of polynorbornene block copolymers with barbell-like sequences as initiators of AE. Triblock (ABA or ABC) copolymers were synthesized by ring-opening metathesis polymerization (ROMP) with one or two activating sugars, mannose or fucose, and one nonactivating sugar, glucose. The active ligand fractions in the polymers varied from 10, 20, or 40%. Simultaneously, random copolymers comprising 20% activating ligands were prepared to confirm the importance of ligand positionality in AE activation in mouse sperm. Polynorbornene 100-mers possessing two 10-mer blocks of activating sugars were the most effective copolymers at inducing AE with levels of AE comparable to their homopolymer counterparts and more effective than their random analogues. Small-angle X-ray scattering (SAXS) was then performed to verify that there were no differences in the conformations of the glycopolymers contributing to their varying AE activity. SAXS data analysis confirmed that all of the glycopolymers assumed semiflexible cylindrical structures with similar radii and Kuhn lengths. These findings suggest that the overall ligand density of the sugar moieties in the polymer is less important than the positionality of short blocks of high-density ligands for AE activation in mouse sperm.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"165–177"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1021/acsbiomedchemau.3c00074
Souvik Sur, Suresh Pujari, Nihar Ranjan, Lidivine Azankia Temgoua, Sarah L. Wicks, Andrea Conner and Dev P. Arya*,
Synthetic modification of oligodeoxynucleotides (ODNs) via conjugation to nucleic acid binding small molecules can improve hybridization and pharmacokinetic properties. In the present study, five Hoechst 33258 derived benzimidazoles were conjugated to T rich ODNs and their hybridization effectiveness was tested. Thermal denaturation studies revealed significant stabilization of complementary duplexes by ODN-benzimidazole conjugates, with the extent of stabilization being highly dependent on the length of the linker between DNA and benzimidazole. The increases in thermal stability were determined to be due to the binding of the benzimidazole moiety to the duplex. Circular dichroism and molecular modeling studies provided insights toward the influence of conjugation on duplex structure and how linker length impacts placement of the benzimidazole moiety in the minor groove. Furthermore, thermal denaturation studies with the complementary strand containing a single base mismatch or being RNA revealed that covalent conjugation of benzimidazoles to an ODN also enhances the sequence specificity. The fundamental studies reported herein provide a strategy to improve the stability and specificity properties of the ODN probes, which can be of use for targeting and diagnostics applications.
通过与核酸结合小分子共轭对寡去氧核苷酸(ODN)进行合成修饰,可以改善杂交和药代动力学特性。本研究将五种 Hoechst 33258 衍生的苯并咪唑与富含 T 的 ODN 共轭,并测试了它们的杂交效果。热变性研究表明,ODN-苯并咪唑共轭物能显著稳定互补双链体,其稳定程度与 DNA 和苯并咪唑之间连接体的长度密切相关。热稳定性的增加是由于苯并咪唑分子与双链体结合所致。环二色性和分子建模研究深入揭示了共轭对双链体结构的影响,以及连接体长度如何影响苯并咪唑分子在小沟中的位置。此外,对含有单碱基错配或 RNA 的互补链进行的热变性研究表明,苯并咪唑与 ODN 共价共轭还能增强序列特异性。本文报告的基础研究为提高 ODN 探针的稳定性和特异性提供了一种策略,可用于靶向和诊断应用。
{"title":"Enhanced Sequence-Specific DNA Recognition Using Oligodeoxynucleotide-Benzimidazole Conjugates","authors":"Souvik Sur, Suresh Pujari, Nihar Ranjan, Lidivine Azankia Temgoua, Sarah L. Wicks, Andrea Conner and Dev P. Arya*, ","doi":"10.1021/acsbiomedchemau.3c00074","DOIUrl":"10.1021/acsbiomedchemau.3c00074","url":null,"abstract":"<p >Synthetic modification of oligodeoxynucleotides (ODNs) via conjugation to nucleic acid binding small molecules can improve hybridization and pharmacokinetic properties. In the present study, five Hoechst 33258 derived benzimidazoles were conjugated to T rich ODNs and their hybridization effectiveness was tested. Thermal denaturation studies revealed significant stabilization of complementary duplexes by ODN-benzimidazole conjugates, with the extent of stabilization being highly dependent on the length of the linker between DNA and benzimidazole. The increases in thermal stability were determined to be due to the binding of the benzimidazole moiety to the duplex. Circular dichroism and molecular modeling studies provided insights toward the influence of conjugation on duplex structure and how linker length impacts placement of the benzimidazole moiety in the minor groove. Furthermore, thermal denaturation studies with the complementary strand containing a single base mismatch or being RNA revealed that covalent conjugation of benzimidazoles to an ODN also enhances the sequence specificity. The fundamental studies reported herein provide a strategy to improve the stability and specificity properties of the ODN probes, which can be of use for targeting and diagnostics applications.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"154–164"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1021/acsbiomedchemau.4c00001
Soheyl Tadjiki, Shahriar Sharifi, Afsaneh Lavasanifar and Morteza Mahmoudi*,
The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. In situ analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for in situ analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for in situ analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for in situ analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.
{"title":"Advancing In Situ Analysis of Biomolecular Corona: Opportunities and Challenges in Utilizing Field-Flow Fractionation","authors":"Soheyl Tadjiki, Shahriar Sharifi, Afsaneh Lavasanifar and Morteza Mahmoudi*, ","doi":"10.1021/acsbiomedchemau.4c00001","DOIUrl":"10.1021/acsbiomedchemau.4c00001","url":null,"abstract":"<p >The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. <i>In situ</i> analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for <i>in situ</i> analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for <i>in situ</i> analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for <i>in situ</i> analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 2","pages":"77–85"},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1021/acsbiomedchemau.3c00073
Rajagopalan Muthukumaran*, and , Ramasubbu Sankararamakrishnan*,
NS1 in flaviviruses is the only nonstructural protein that is secretory and interacts with different cellular components of the host cell membrane. NS1 is localized in the ER as a dimer to facilitate viral replication. Crystal structures of NS1 homologues from zika (ZIKV) and dengue (DENV) viruses have revealed the organization of different domains in NS1 dimers. The β-roll and the connector and intertwined loop regions of wing domains of NS1 have been shown to interact with the membranes. In this study, we have performed multiple molecular dynamics (MD) simulations of ZIKV and DENV NS1 systems in apo and in POPE bilayers with different cholesterol concentrations (0, 20 and 40%). The NS1 protein was placed just above the membrane surface, and for each NS1-membrane system two to three independent simulations with 600 ns production run were performed. At the end of the production runs, ZIKV NS1 inserts deeper inside the membrane compared to the DENV counterpart. Unlike ZIKV NS1, the orientation of DENV NS1 is asymmetric in which one of the chains in the dimer interacts with the membrane while the other is more exposed to the solvent. The β-roll region in ZIKV NS1 penetrates beyond the headgroup region and interacts with the lipid acyl chains while the C-terminal region barely interacts with the headgroup. Specific residues in the intertwined region deeply penetrate inside the membrane. The role of charged and aromatic residues of ZIKV NS1 in strongly interacting with the membrane components is revealed. The presence of cholesterol affects the extent of insertion in the membrane and interaction of individual residues. Overall, membrane-binding properties of ZIKV NS1 significantly differ from its counterpart in DENV. The differences found in the binding and insertion of NS1 can be used to design drugs and novel antibodies that can be flavivirus specific.
{"title":"Differences in the Membrane-Binding Properties of Flaviviral Nonstructural 1 (NS1) Protein: Comparative Simulations of Zika and Dengue Virus NS1 Proteins in Explicit Bilayers","authors":"Rajagopalan Muthukumaran*, and , Ramasubbu Sankararamakrishnan*, ","doi":"10.1021/acsbiomedchemau.3c00073","DOIUrl":"10.1021/acsbiomedchemau.3c00073","url":null,"abstract":"<p >NS1 in flaviviruses is the only nonstructural protein that is secretory and interacts with different cellular components of the host cell membrane. NS1 is localized in the ER as a dimer to facilitate viral replication. Crystal structures of NS1 homologues from zika (ZIKV) and dengue (DENV) viruses have revealed the organization of different domains in NS1 dimers. The β-roll and the connector and intertwined loop regions of wing domains of NS1 have been shown to interact with the membranes. In this study, we have performed multiple molecular dynamics (MD) simulations of ZIKV and DENV NS1 systems in apo and in POPE bilayers with different cholesterol concentrations (0, 20 and 40%). The NS1 protein was placed just above the membrane surface, and for each NS1-membrane system two to three independent simulations with 600 ns production run were performed. At the end of the production runs, ZIKV NS1 inserts deeper inside the membrane compared to the DENV counterpart. Unlike ZIKV NS1, the orientation of DENV NS1 is asymmetric in which one of the chains in the dimer interacts with the membrane while the other is more exposed to the solvent. The β-roll region in ZIKV NS1 penetrates beyond the headgroup region and interacts with the lipid acyl chains while the C-terminal region barely interacts with the headgroup. Specific residues in the intertwined region deeply penetrate inside the membrane. The role of charged and aromatic residues of ZIKV NS1 in strongly interacting with the membrane components is revealed. The presence of cholesterol affects the extent of insertion in the membrane and interaction of individual residues. Overall, membrane-binding properties of ZIKV NS1 significantly differ from its counterpart in DENV. The differences found in the binding and insertion of NS1 can be used to design drugs and novel antibodies that can be flavivirus specific.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"137–153"},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1021/acsbiomedchemau.3c00066
Neharika Marupudi, and , May P. Xiong*,
Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative diseases that are typically caused by a monogenetic mutation, leading to development of disordered movement symptoms such as dystonia, hyperreflexia, etc. Brain iron accumulation can be diagnosed through MRI imaging and is hypothesized to be the cause of oxidative stress, leading to the degeneration of brain tissue. There are four main types of NBIA: pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MKAN), and beta-propeller protein-associated neurodegeneration (BPAN). There are no causative therapies for these diseases, but iron chelators have been shown to have potential toward treating NBIA. Three chelators are investigated in this Review: deferoxamine (DFO), desferasirox (DFS), and deferiprone (DFP). DFO has been investigated to treat neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, dose-related toxicity in these studies, as well as in PKAN studies, have shown that the drug still requires more development before it can be applied toward NBIA cases. Iron chelation therapies other than the ones currently in clinical use have not yet reached clinical studies, but they may possess characteristics that would allow them to access the brain in ways that current chelators cannot. Intranasal formulations are an attractive dosage form to study for chelation therapy, as this method of delivery can bypass the blood-brain barrier and access the CNS. Gene therapy differs from iron chelation therapy as it is a causal treatment of the disease, whereas iron chelators only target the disease progression of NBIA. Because the pathophysiology of NBIA diseases is still unclear, future courses of action should be focused on causative treatment; however, iron chelation therapy is the current best course of action.
{"title":"Genetic Targets and Applications of Iron Chelators for Neurodegeneration with Brain Iron Accumulation","authors":"Neharika Marupudi, and , May P. Xiong*, ","doi":"10.1021/acsbiomedchemau.3c00066","DOIUrl":"10.1021/acsbiomedchemau.3c00066","url":null,"abstract":"<p >Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative diseases that are typically caused by a monogenetic mutation, leading to development of disordered movement symptoms such as dystonia, hyperreflexia, etc. Brain iron accumulation can be diagnosed through MRI imaging and is hypothesized to be the cause of oxidative stress, leading to the degeneration of brain tissue. There are four main types of NBIA: pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MKAN), and beta-propeller protein-associated neurodegeneration (BPAN). There are no causative therapies for these diseases, but iron chelators have been shown to have potential toward treating NBIA. Three chelators are investigated in this Review: deferoxamine (DFO), desferasirox (DFS), and deferiprone (DFP). DFO has been investigated to treat neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, dose-related toxicity in these studies, as well as in PKAN studies, have shown that the drug still requires more development before it can be applied toward NBIA cases. Iron chelation therapies other than the ones currently in clinical use have not yet reached clinical studies, but they may possess characteristics that would allow them to access the brain in ways that current chelators cannot. Intranasal formulations are an attractive dosage form to study for chelation therapy, as this method of delivery can bypass the blood-brain barrier and access the CNS. Gene therapy differs from iron chelation therapy as it is a causal treatment of the disease, whereas iron chelators only target the disease progression of NBIA. Because the pathophysiology of NBIA diseases is still unclear, future courses of action should be focused on causative treatment; however, iron chelation therapy is the current best course of action.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"119–130"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.1021/acsbiomedchemau.3c00063
Gizem Antika, Zeynep Özlem Cinar, Serhat Dönmez, Esma Seçen, Mehmet Özbil, Cristina Prandi and Tugba Boyunegmez Tumer*,
Phytohormones have significant roles in redox metabolism, inflammatory responses, and cellular survival mechanisms within the microenvironment of the mammalian brain. Herein, we identified the mammalian molecular targets of three representative strigolactone (SL) analogues structurally derived from apocarotenoids and the functional equivalent of plant hormones. All tested SL analogues have an inhibitory effect on NLRP3 inflammasome-mediated IL-1β release in murine microglial cells. However, IND and EGO10 became prominent among them due to their high potency at low micromolar doses. All SL analogues dose-dependently suppressed the release and expression of proinflammatory factors. For EGO10 and IND, IC50 values for iNOS-associated NO secretion were as low as 1.72 and 1.02 μM, respectively. In silico analyses revealed that (S)-EGO10 interacted with iNOS, NLRP3, and Keap1 ligands with the highest binding affinities among all stereoisomeric SL analogues. Although all compounds were effective in microglial Mox phenotype polarization, 4-Br-debranone exhibited a differential pattern for upregulating Nrf2-driven downstream enzymes.
{"title":"Effects of Strigolactones on NLRP3 Activation, Nitrosative Stress, and Antioxidant Mox Phenotype: In Vitro and In Silico Evidence","authors":"Gizem Antika, Zeynep Özlem Cinar, Serhat Dönmez, Esma Seçen, Mehmet Özbil, Cristina Prandi and Tugba Boyunegmez Tumer*, ","doi":"10.1021/acsbiomedchemau.3c00063","DOIUrl":"10.1021/acsbiomedchemau.3c00063","url":null,"abstract":"<p >Phytohormones have significant roles in redox metabolism, inflammatory responses, and cellular survival mechanisms within the microenvironment of the mammalian brain. Herein, we identified the mammalian molecular targets of three representative strigolactone (SL) analogues structurally derived from apocarotenoids and the functional equivalent of plant hormones. All tested SL analogues have an inhibitory effect on NLRP3 inflammasome-mediated IL-1β release in murine microglial cells. However, IND and EGO10 became prominent among them due to their high potency at low micromolar doses. All SL analogues dose-dependently suppressed the release and expression of proinflammatory factors. For EGO10 and IND, IC<sub>50</sub> values for iNOS-associated NO secretion were as low as 1.72 and 1.02 μM, respectively. In silico analyses revealed that (<i>S</i>)-EGO10 interacted with iNOS, NLRP3, and Keap1 ligands with the highest binding affinities among all stereoisomeric SL analogues. Although all compounds were effective in microglial Mox phenotype polarization, 4-Br-debranone exhibited a differential pattern for upregulating Nrf2-driven downstream enzymes.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"131–136"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139918472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.1021/acsbiomedchemau.3c00075
Xin Zhang*, and , Squire J. Booker*,
{"title":"Seeing Is Believing: Advances in Biological Imaging","authors":"Xin Zhang*, and , Squire J. Booker*, ","doi":"10.1021/acsbiomedchemau.3c00075","DOIUrl":"10.1021/acsbiomedchemau.3c00075","url":null,"abstract":"","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 1","pages":"1–3"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The persistence of neurodegenerative diseases has necessitated the development of new strategies to monitor protein homeostasis (proteostasis). Previous efforts in our laboratory have focused on the development of fluorogenic strategies to observe the onset and progression of proteostatic stress. These works utilized solvatochromic and viscosity sensitive fluorophores to sense protein folded states, enabling stressor screening with an increase in the emission intensity upon aggregation. In this work, we present a novel, high-fidelity assay to detect perturbations of cellular proteostasis, where the fluorescence intensity decreases with the onset of proteostatic stress. Utilizing a fluorogenic, hydroxymethyl silicon-rhodamine probe to differentiate between protein folded states, we establish the validity of this technology in living cells by demonstrating a two-fold difference in fluorescence intensity between unstressed and stressed conditions.
{"title":"High-Fidelity Assay Based on Turn-Off Fluorescence to Detect the Perturbations of Cellular Proteostasis","authors":"Conner Hoelzel, Yulong Bai, Mengdie Wang, Yu Liu* and Xin Zhang*, ","doi":"10.1021/acsbiomedchemau.3c00012","DOIUrl":"10.1021/acsbiomedchemau.3c00012","url":null,"abstract":"<p >The persistence of neurodegenerative diseases has necessitated the development of new strategies to monitor protein homeostasis (proteostasis). Previous efforts in our laboratory have focused on the development of fluorogenic strategies to observe the onset and progression of proteostatic stress. These works utilized solvatochromic and viscosity sensitive fluorophores to sense protein folded states, enabling stressor screening with an increase in the emission intensity upon aggregation. In this work, we present a novel, high-fidelity assay to detect perturbations of cellular proteostasis, where the fluorescence intensity decreases with the onset of proteostatic stress. Utilizing a fluorogenic, hydroxymethyl silicon-rhodamine probe to differentiate between protein folded states, we establish the validity of this technology in living cells by demonstrating a two-fold difference in fluorescence intensity between unstressed and stressed conditions.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 2","pages":"111–118"},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}