首页 > 最新文献

ACS Bio & Med Chem Au最新文献

英文 中文
Glycopolymers Prepared by Alternating Ring-Opening Metathesis Polymerization Provide Access to Distinct, Multivalent Structures for the Probing of Biological Activity 通过交替开环嵌段聚合法制备的含糖聚合物可获得用于生物活性探究的独特多价结构
IF 3.8 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-28 DOI: 10.1021/acsbiomedchemau.4c0001810.1021/acsbiomedchemau.4c00018
Luz C. Mendez, Francis O. Boadi, Mitchell Kennedy, Surita R. Bhatia and Nicole S. Sampson*, 

A myriad of biological processes are facilitated by ligand–receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand–receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand–receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.

配体与受体的相互作用促进了无数的生物过程。这些相互作用的亲和力较低,通常通过多价啮合来促进结合。然而,每种生物相互作用都需要配体的独特显示和取向。因此,合成多价探针的可用性和多样性对于配体-受体结合相互作用的研究非常宝贵。在此,我们报告了由双环[4.2.0]辛-6-烯-7-甲酰胺和 4,7-二氢-1,3-二氧杂环庚烷或环己烯制备的聚糖。这些糖聚合物是通过交替开环元合成聚合法合成的,具有精确的配体间距,并可选择疏水或缩醛功能化聚合物骨架。小角 X 射线散射(SAXS)数据分析显示,这些 [4.2.0] 糖聚合物在溶液中具有不同的构象。在水介质中,[4.2.0]-二氧杂环庚烯聚合物形成了具有杆状柔性结构的膨胀聚合物链,而[4.2.0]-环己烯聚合物则具有紧凑的球状结构。为了说明这些聚糖如何有助于探索配体与受体之间的相互作用,我们将[4.2.0]聚糖纳入了一项生物试验,以评估它们作为小鼠精子顶体外渗(AE)激活剂的潜力。生物试验的结果证实,[4.2.0]聚糖的不同结构会引起不同的生物反应;[4.2.0]-环己烯聚糖可诱导小鼠精子的顶体外分泌,而[4.2.0]-二氧杂环庚烷聚糖则不会。在此,我们根据聚合物探针所需的疏水性、刚性和结构构象,提供了两种具有中低分子量分散性和低细胞毒性的糖聚合物选择,可用于生物检测。
{"title":"Glycopolymers Prepared by Alternating Ring-Opening Metathesis Polymerization Provide Access to Distinct, Multivalent Structures for the Probing of Biological Activity","authors":"Luz C. Mendez,&nbsp;Francis O. Boadi,&nbsp;Mitchell Kennedy,&nbsp;Surita R. Bhatia and Nicole S. Sampson*,&nbsp;","doi":"10.1021/acsbiomedchemau.4c0001810.1021/acsbiomedchemau.4c00018","DOIUrl":"https://doi.org/10.1021/acsbiomedchemau.4c00018https://doi.org/10.1021/acsbiomedchemau.4c00018","url":null,"abstract":"<p >A myriad of biological processes are facilitated by ligand–receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand–receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand–receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 4","pages":"214–225 214–225"},"PeriodicalIF":3.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycopolymers Prepared by Alternating Ring-Opening Metathesis Polymerization Provide Access to Distinct, Multivalent Structures for the Probing of Biological Activity 通过交替开环嵌段聚合法制备的含糖聚合物可获得用于生物活性探究的独特多价结构
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-28 DOI: 10.1021/acsbiomedchemau.4c00018
Luz C. Mendez, Francis O. Boadi, Mitchell Kennedy, Surita R. Bhatia, Nicole S. Sampson
A myriad of biological processes are facilitated by ligand–receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand–receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand–receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.
配体与受体的相互作用促进了无数的生物过程。这些相互作用的亲和力较低,通常通过多价啮合来促进结合。然而,每种生物相互作用都需要配体的独特显示和取向。因此,合成多价探针的可用性和多样性对于配体-受体结合相互作用的研究非常宝贵。在此,我们报告了由双环[4.2.0]辛-6-烯-7-甲酰胺和 4,7-二氢-1,3-二氧杂环庚烷或环己烯制备的聚糖。这些糖聚合物是通过交替开环元合成聚合法合成的,具有精确的配体间距,并可选择疏水或缩醛功能化聚合物骨架。小角 X 射线散射(SAXS)数据分析显示,这些 [4.2.0] 糖聚合物在溶液中具有不同的构象。在水介质中,[4.2.0]-二氧杂环庚烯聚合物形成了具有杆状柔性结构的膨胀聚合物链,而[4.2.0]-环己烯聚合物则具有紧凑的球状结构。为了说明这些聚糖如何有助于探索配体与受体之间的相互作用,我们将[4.2.0]聚糖纳入了一项生物试验,以评估它们作为小鼠精子顶体外渗(AE)激活剂的潜力。生物试验的结果证实,[4.2.0]聚糖的不同结构会引起不同的生物反应;[4.2.0]-环己烯聚糖可诱导小鼠精子的顶体外分泌,而[4.2.0]-二氧杂环庚烷聚糖则不会。在此,我们根据聚合物探针所需的疏水性、刚性和结构构象,提供了两种具有中低分子量分散性和低细胞毒性的糖聚合物选择,可用于生物检测。
{"title":"Glycopolymers Prepared by Alternating Ring-Opening Metathesis Polymerization Provide Access to Distinct, Multivalent Structures for the Probing of Biological Activity","authors":"Luz C. Mendez, Francis O. Boadi, Mitchell Kennedy, Surita R. Bhatia, Nicole S. Sampson","doi":"10.1021/acsbiomedchemau.4c00018","DOIUrl":"https://doi.org/10.1021/acsbiomedchemau.4c00018","url":null,"abstract":"A myriad of biological processes are facilitated by ligand–receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand–receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand–receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triblock Glycopolymers with Two 10-mer Blocks of Activating Sugars Enhance the Activation of Acrosomal Exocytosis in Mouse Sperm 含有两个 10-mer 活化糖块的三嵌段聚糖可增强小鼠精子顶体外渗的激活作用
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-04-29 DOI: 10.1021/acsbiomedchemau.4c00012
Luz C. Mendez, Mitchell Kennedy, Surita R. Bhatia and Nicole S. Sampson*, 

Carbohydrate recognition is imperative for the induction of sperm acrosomal exocytosis (AE), an essential phenomenon in mammalian fertilization. In mouse sperm, polynorbornene 100-mers displaying fucose or mannose moieties were effective at inducing AE. In contrast, glycopolymers exhibiting glucose sugars resulted in no AE activation. To further elucidate the role of ligand density on the activation of AE in mouse sperm, a triple-stain flow cytometry assay was employed to determine the efficacy of polynorbornene block copolymers with barbell-like sequences as initiators of AE. Triblock (ABA or ABC) copolymers were synthesized by ring-opening metathesis polymerization (ROMP) with one or two activating sugars, mannose or fucose, and one nonactivating sugar, glucose. The active ligand fractions in the polymers varied from 10, 20, or 40%. Simultaneously, random copolymers comprising 20% activating ligands were prepared to confirm the importance of ligand positionality in AE activation in mouse sperm. Polynorbornene 100-mers possessing two 10-mer blocks of activating sugars were the most effective copolymers at inducing AE with levels of AE comparable to their homopolymer counterparts and more effective than their random analogues. Small-angle X-ray scattering (SAXS) was then performed to verify that there were no differences in the conformations of the glycopolymers contributing to their varying AE activity. SAXS data analysis confirmed that all of the glycopolymers assumed semiflexible cylindrical structures with similar radii and Kuhn lengths. These findings suggest that the overall ligand density of the sugar moieties in the polymer is less important than the positionality of short blocks of high-density ligands for AE activation in mouse sperm.

碳水化合物识别是诱导精子顶体外渗(AE)的必要条件,这是哺乳动物受精过程中的一个重要现象。在小鼠精子中,显示岩藻糖或甘露糖分子的聚降冰片烯 100 单体能有效诱导 AE。相比之下,含有葡萄糖的聚糖则不会激活AE。为了进一步阐明配体密度对激活小鼠精子中 AE 的作用,我们采用了一种三染色流式细胞仪测定法来确定具有钩刺状序列的聚降冰片烯嵌段共聚物作为 AE 引发剂的功效。三嵌段(ABA 或 ABC)共聚物是通过开环偏聚(ROMP)与一种或两种活化糖(甘露糖或岩藻糖)和一种非活化糖(葡萄糖)合成的。聚合物中的活性配体比例为 10%、20% 或 40%。同时,还制备了含有 20% 活性配体的无规共聚物,以证实配体位置对小鼠精子中 AE 激活的重要性。聚降冰片烯 100 嵌段具有两个 10 嵌段的活化糖,是诱导 AE 最有效的共聚物,其 AE 水平与均聚物相当,比无规类似物更有效。随后进行了小角 X 射线散射 (SAXS),以验证糖聚合物的构象是否存在差异,从而导致它们的 AE 活性各不相同。SAXS 数据分析证实,所有聚糖都具有半柔性圆柱结构,半径和库恩长度相似。这些研究结果表明,聚合物中糖分子的整体配体密度对于激活小鼠精子中的AE并没有那么重要,重要的是高密度配体短块的位置。
{"title":"Triblock Glycopolymers with Two 10-mer Blocks of Activating Sugars Enhance the Activation of Acrosomal Exocytosis in Mouse Sperm","authors":"Luz C. Mendez,&nbsp;Mitchell Kennedy,&nbsp;Surita R. Bhatia and Nicole S. Sampson*,&nbsp;","doi":"10.1021/acsbiomedchemau.4c00012","DOIUrl":"10.1021/acsbiomedchemau.4c00012","url":null,"abstract":"<p >Carbohydrate recognition is imperative for the induction of sperm acrosomal exocytosis (AE), an essential phenomenon in mammalian fertilization. In mouse sperm, polynorbornene 100-mers displaying fucose or mannose moieties were effective at inducing AE. In contrast, glycopolymers exhibiting glucose sugars resulted in no AE activation. To further elucidate the role of ligand density on the activation of AE in mouse sperm, a triple-stain flow cytometry assay was employed to determine the efficacy of polynorbornene block copolymers with barbell-like sequences as initiators of AE. Triblock (ABA or ABC) copolymers were synthesized by ring-opening metathesis polymerization (ROMP) with one or two activating sugars, mannose or fucose, and one nonactivating sugar, glucose. The active ligand fractions in the polymers varied from 10, 20, or 40%. Simultaneously, random copolymers comprising 20% activating ligands were prepared to confirm the importance of ligand positionality in AE activation in mouse sperm. Polynorbornene 100-mers possessing two 10-mer blocks of activating sugars were the most effective copolymers at inducing AE with levels of AE comparable to their homopolymer counterparts and more effective than their random analogues. Small-angle X-ray scattering (SAXS) was then performed to verify that there were no differences in the conformations of the glycopolymers contributing to their varying AE activity. SAXS data analysis confirmed that all of the glycopolymers assumed semiflexible cylindrical structures with similar radii and Kuhn lengths. These findings suggest that the overall ligand density of the sugar moieties in the polymer is less important than the positionality of short blocks of high-density ligands for AE activation in mouse sperm.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"165–177"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Sequence-Specific DNA Recognition Using Oligodeoxynucleotide-Benzimidazole Conjugates 利用寡聚氧核苷酸-苯并咪唑共轭物增强序列特异性 DNA 识别能力
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-04-16 DOI: 10.1021/acsbiomedchemau.3c00074
Souvik Sur, Suresh Pujari, Nihar Ranjan, Lidivine Azankia Temgoua, Sarah L. Wicks, Andrea Conner and Dev P. Arya*, 

Synthetic modification of oligodeoxynucleotides (ODNs) via conjugation to nucleic acid binding small molecules can improve hybridization and pharmacokinetic properties. In the present study, five Hoechst 33258 derived benzimidazoles were conjugated to T rich ODNs and their hybridization effectiveness was tested. Thermal denaturation studies revealed significant stabilization of complementary duplexes by ODN-benzimidazole conjugates, with the extent of stabilization being highly dependent on the length of the linker between DNA and benzimidazole. The increases in thermal stability were determined to be due to the binding of the benzimidazole moiety to the duplex. Circular dichroism and molecular modeling studies provided insights toward the influence of conjugation on duplex structure and how linker length impacts placement of the benzimidazole moiety in the minor groove. Furthermore, thermal denaturation studies with the complementary strand containing a single base mismatch or being RNA revealed that covalent conjugation of benzimidazoles to an ODN also enhances the sequence specificity. The fundamental studies reported herein provide a strategy to improve the stability and specificity properties of the ODN probes, which can be of use for targeting and diagnostics applications.

通过与核酸结合小分子共轭对寡去氧核苷酸(ODN)进行合成修饰,可以改善杂交和药代动力学特性。本研究将五种 Hoechst 33258 衍生的苯并咪唑与富含 T 的 ODN 共轭,并测试了它们的杂交效果。热变性研究表明,ODN-苯并咪唑共轭物能显著稳定互补双链体,其稳定程度与 DNA 和苯并咪唑之间连接体的长度密切相关。热稳定性的增加是由于苯并咪唑分子与双链体结合所致。环二色性和分子建模研究深入揭示了共轭对双链体结构的影响,以及连接体长度如何影响苯并咪唑分子在小沟中的位置。此外,对含有单碱基错配或 RNA 的互补链进行的热变性研究表明,苯并咪唑与 ODN 共价共轭还能增强序列特异性。本文报告的基础研究为提高 ODN 探针的稳定性和特异性提供了一种策略,可用于靶向和诊断应用。
{"title":"Enhanced Sequence-Specific DNA Recognition Using Oligodeoxynucleotide-Benzimidazole Conjugates","authors":"Souvik Sur,&nbsp;Suresh Pujari,&nbsp;Nihar Ranjan,&nbsp;Lidivine Azankia Temgoua,&nbsp;Sarah L. Wicks,&nbsp;Andrea Conner and Dev P. Arya*,&nbsp;","doi":"10.1021/acsbiomedchemau.3c00074","DOIUrl":"10.1021/acsbiomedchemau.3c00074","url":null,"abstract":"<p >Synthetic modification of oligodeoxynucleotides (ODNs) via conjugation to nucleic acid binding small molecules can improve hybridization and pharmacokinetic properties. In the present study, five Hoechst 33258 derived benzimidazoles were conjugated to T rich ODNs and their hybridization effectiveness was tested. Thermal denaturation studies revealed significant stabilization of complementary duplexes by ODN-benzimidazole conjugates, with the extent of stabilization being highly dependent on the length of the linker between DNA and benzimidazole. The increases in thermal stability were determined to be due to the binding of the benzimidazole moiety to the duplex. Circular dichroism and molecular modeling studies provided insights toward the influence of conjugation on duplex structure and how linker length impacts placement of the benzimidazole moiety in the minor groove. Furthermore, thermal denaturation studies with the complementary strand containing a single base mismatch or being RNA revealed that covalent conjugation of benzimidazoles to an ODN also enhances the sequence specificity. The fundamental studies reported herein provide a strategy to improve the stability and specificity properties of the ODN probes, which can be of use for targeting and diagnostics applications.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"154–164"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140578814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing In Situ Analysis of Biomolecular Corona: Opportunities and Challenges in Utilizing Field-Flow Fractionation 推进生物分子电晕的原位分析:利用场流分馏技术的机遇与挑战
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-21 DOI: 10.1021/acsbiomedchemau.4c00001
Soheyl Tadjiki, Shahriar Sharifi, Afsaneh Lavasanifar and Morteza Mahmoudi*, 

The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. In situ analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for in situ analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for in situ analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for in situ analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.

生物分子电晕是一层复杂的生物分子,当纳米粒子(NPs)接触到包括血液在内的生物液体时,会被其包裹。这一动态界面对纳米医学的发展至关重要,尤其是在治疗和诊断领域。对生物分子电晕的原位分析至关重要,因为它可以大大提高我们准确预测纳米药物生物命运的能力,从而开发出更有效、更安全、更精确的靶向纳米药物。尽管生物分子电晕非常重要,但可用于原位分析的技术却非常有限。本教程综述概述了现有的生物分子电晕原位分析技术,重点探讨了使用场流分馏(FFF)进行生物分子电晕原位分析的优势和局限性。该研究深入探讨了场流分馏如何揭示电晕的复杂性,从而加深我们对下一代医疗用纳米药物的理解并为其设计提供指导。
{"title":"Advancing In Situ Analysis of Biomolecular Corona: Opportunities and Challenges in Utilizing Field-Flow Fractionation","authors":"Soheyl Tadjiki,&nbsp;Shahriar Sharifi,&nbsp;Afsaneh Lavasanifar and Morteza Mahmoudi*,&nbsp;","doi":"10.1021/acsbiomedchemau.4c00001","DOIUrl":"10.1021/acsbiomedchemau.4c00001","url":null,"abstract":"<p >The biomolecular corona, a complex layer of biological molecules, envelops nanoparticles (NPs) upon exposure to biological fluids including blood. This dynamic interface is pivotal for the advancement of nanomedicine, particularly in areas of therapy and diagnostics. <i>In situ</i> analysis of the biomolecular corona is crucial, as it can substantially improve our ability to accurately predict the biological fate of nanomedicine and, therefore, enable development of more effective, safe, and precisely targeted nanomedicines. Despite its importance, the repertoire of techniques available for <i>in situ</i> analysis of the biomolecular corona is surprisingly limited. This tutorial review provides an overview of the available techniques for <i>in situ</i> analysis of biomolecular corona with a particular focus on exploring both the advantages and the limitations inherent in the use of field-flow fractionation (FFF) for <i>in situ</i> analysis of the biomolecular corona. It delves into how FFF can unravel the complexities of the corona, enhancing our understanding and guiding the design of next-generation nanomedicines for medical use.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 2","pages":"77–85"},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.4c00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences in the Membrane-Binding Properties of Flaviviral Nonstructural 1 (NS1) Protein: Comparative Simulations of Zika and Dengue Virus NS1 Proteins in Explicit Bilayers 黄病毒非结构 1 (NS1) 蛋白膜结合特性的差异:寨卡病毒和登革热病毒 NS1 蛋白在显式双分子层中的比较模拟
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-15 DOI: 10.1021/acsbiomedchemau.3c00073
Rajagopalan Muthukumaran*,  and , Ramasubbu Sankararamakrishnan*, 

NS1 in flaviviruses is the only nonstructural protein that is secretory and interacts with different cellular components of the host cell membrane. NS1 is localized in the ER as a dimer to facilitate viral replication. Crystal structures of NS1 homologues from zika (ZIKV) and dengue (DENV) viruses have revealed the organization of different domains in NS1 dimers. The β-roll and the connector and intertwined loop regions of wing domains of NS1 have been shown to interact with the membranes. In this study, we have performed multiple molecular dynamics (MD) simulations of ZIKV and DENV NS1 systems in apo and in POPE bilayers with different cholesterol concentrations (0, 20 and 40%). The NS1 protein was placed just above the membrane surface, and for each NS1-membrane system two to three independent simulations with 600 ns production run were performed. At the end of the production runs, ZIKV NS1 inserts deeper inside the membrane compared to the DENV counterpart. Unlike ZIKV NS1, the orientation of DENV NS1 is asymmetric in which one of the chains in the dimer interacts with the membrane while the other is more exposed to the solvent. The β-roll region in ZIKV NS1 penetrates beyond the headgroup region and interacts with the lipid acyl chains while the C-terminal region barely interacts with the headgroup. Specific residues in the intertwined region deeply penetrate inside the membrane. The role of charged and aromatic residues of ZIKV NS1 in strongly interacting with the membrane components is revealed. The presence of cholesterol affects the extent of insertion in the membrane and interaction of individual residues. Overall, membrane-binding properties of ZIKV NS1 significantly differ from its counterpart in DENV. The differences found in the binding and insertion of NS1 can be used to design drugs and novel antibodies that can be flavivirus specific.

黄病毒中的 NS1 是唯一具有分泌功能的非结构蛋白,可与宿主细胞膜上的不同细胞成分相互作用。NS1 以二聚体的形式定位于 ER 中,以促进病毒复制。来自寨卡(ZIKV)和登革热(DENV)病毒的NS1同源物的晶体结构揭示了NS1二聚体中不同结构域的组织结构。研究表明,NS1 的β-roll 和翼状结构域的连接器和交织环区域与膜相互作用。在本研究中,我们对 ZIKV 和 DENV NS1 系统在不同胆固醇浓度(0、20 和 40%)的 apo 和 POPE 双层膜中进行了多次分子动力学(MD)模拟。将 NS1 蛋白放置在膜表面的正上方,对每个 NS1 膜系统进行两到三次独立模拟,每次运行 600 毫微秒。在生产运行结束时,ZIKV NS1 与 DENV 相比插入膜内更深。与 ZIKV NS1 不同,DENV NS1 的取向是不对称的,二聚体中的一条链与膜相互作用,而另一条链则更多地暴露在溶剂中。ZIKV NS1 的 β-roll 区穿透头基区并与脂质酰基链相互作用,而 C 端区几乎不与头基区相互作用。交织区中的特定残基深入膜内部。揭示了 ZIKV NS1 的带电残基和芳香残基在与膜成分强烈相互作用中的作用。胆固醇的存在会影响插入膜的程度和单个残基的相互作用。总体而言,ZIKV NS1 的膜结合特性与 DENV 的膜结合特性有很大不同。NS1在结合和插入方面发现的差异可用于设计具有黄病毒特异性的药物和新型抗体。
{"title":"Differences in the Membrane-Binding Properties of Flaviviral Nonstructural 1 (NS1) Protein: Comparative Simulations of Zika and Dengue Virus NS1 Proteins in Explicit Bilayers","authors":"Rajagopalan Muthukumaran*,&nbsp; and ,&nbsp;Ramasubbu Sankararamakrishnan*,&nbsp;","doi":"10.1021/acsbiomedchemau.3c00073","DOIUrl":"10.1021/acsbiomedchemau.3c00073","url":null,"abstract":"<p >NS1 in flaviviruses is the only nonstructural protein that is secretory and interacts with different cellular components of the host cell membrane. NS1 is localized in the ER as a dimer to facilitate viral replication. Crystal structures of NS1 homologues from zika (ZIKV) and dengue (DENV) viruses have revealed the organization of different domains in NS1 dimers. The β-roll and the connector and intertwined loop regions of wing domains of NS1 have been shown to interact with the membranes. In this study, we have performed multiple molecular dynamics (MD) simulations of ZIKV and DENV NS1 systems in apo and in POPE bilayers with different cholesterol concentrations (0, 20 and 40%). The NS1 protein was placed just above the membrane surface, and for each NS1-membrane system two to three independent simulations with 600 ns production run were performed. At the end of the production runs, ZIKV NS1 inserts deeper inside the membrane compared to the DENV counterpart. Unlike ZIKV NS1, the orientation of DENV NS1 is asymmetric in which one of the chains in the dimer interacts with the membrane while the other is more exposed to the solvent. The β-roll region in ZIKV NS1 penetrates beyond the headgroup region and interacts with the lipid acyl chains while the C-terminal region barely interacts with the headgroup. Specific residues in the intertwined region deeply penetrate inside the membrane. The role of charged and aromatic residues of ZIKV NS1 in strongly interacting with the membrane components is revealed. The presence of cholesterol affects the extent of insertion in the membrane and interaction of individual residues. Overall, membrane-binding properties of ZIKV NS1 significantly differ from its counterpart in DENV. The differences found in the binding and insertion of NS1 can be used to design drugs and novel antibodies that can be flavivirus specific.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"137–153"},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Targets and Applications of Iron Chelators for Neurodegeneration with Brain Iron Accumulation 铁螯合剂治疗脑铁蓄积性神经变性的基因靶点和应用
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-03-11 DOI: 10.1021/acsbiomedchemau.3c00066
Neharika Marupudi,  and , May P. Xiong*, 

Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative diseases that are typically caused by a monogenetic mutation, leading to development of disordered movement symptoms such as dystonia, hyperreflexia, etc. Brain iron accumulation can be diagnosed through MRI imaging and is hypothesized to be the cause of oxidative stress, leading to the degeneration of brain tissue. There are four main types of NBIA: pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MKAN), and beta-propeller protein-associated neurodegeneration (BPAN). There are no causative therapies for these diseases, but iron chelators have been shown to have potential toward treating NBIA. Three chelators are investigated in this Review: deferoxamine (DFO), desferasirox (DFS), and deferiprone (DFP). DFO has been investigated to treat neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, dose-related toxicity in these studies, as well as in PKAN studies, have shown that the drug still requires more development before it can be applied toward NBIA cases. Iron chelation therapies other than the ones currently in clinical use have not yet reached clinical studies, but they may possess characteristics that would allow them to access the brain in ways that current chelators cannot. Intranasal formulations are an attractive dosage form to study for chelation therapy, as this method of delivery can bypass the blood-brain barrier and access the CNS. Gene therapy differs from iron chelation therapy as it is a causal treatment of the disease, whereas iron chelators only target the disease progression of NBIA. Because the pathophysiology of NBIA diseases is still unclear, future courses of action should be focused on causative treatment; however, iron chelation therapy is the current best course of action.

脑铁积聚性神经变性(NBIA)是一组神经变性疾病,通常由单基因突变引起,导致肌张力障碍、反射亢进等运动失调症状。脑铁积聚可通过核磁共振成像诊断,并被假定为氧化应激的原因,导致脑组织变性。NBIA主要有四种类型:泛酸激酶相关神经变性(PKAN)、PLA2G6相关神经变性(PLAN)、线粒体膜蛋白相关神经变性(MKAN)和β-螺旋桨蛋白相关神经变性(BPAN)。目前还没有治疗这些疾病的方法,但铁螯合剂已被证明具有治疗 NBIA 的潜力。本综述研究了三种螯合剂:去铁胺(DFO)、去铁胺(DFS)和去铁酮(DFP)。去铁胺已被用于治疗阿尔茨海默病(AD)和帕金森病(PD)等神经退行性疾病;然而,这些研究以及 PKAN 研究中与剂量相关的毒性表明,该药物在应用于 NBIA 病例之前仍需进一步开发。除目前临床使用的铁螯合疗法外,其他铁螯合疗法尚未进入临床研究阶段,但它们可能具有目前的螯合剂无法进入大脑的特性。鼻内制剂是螯合疗法的一种有吸引力的研究剂型,因为这种给药方法可以绕过血脑屏障,进入中枢神经系统。基因疗法不同于铁螯合疗法,因为它是对疾病的因果治疗,而铁螯合剂只针对 NBIA 的疾病进展。由于 NBIA 疾病的病理生理学尚不清楚,未来的行动方案应侧重于病因治疗;然而,铁螯合疗法是目前最佳的行动方案。
{"title":"Genetic Targets and Applications of Iron Chelators for Neurodegeneration with Brain Iron Accumulation","authors":"Neharika Marupudi,&nbsp; and ,&nbsp;May P. Xiong*,&nbsp;","doi":"10.1021/acsbiomedchemau.3c00066","DOIUrl":"10.1021/acsbiomedchemau.3c00066","url":null,"abstract":"<p >Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative diseases that are typically caused by a monogenetic mutation, leading to development of disordered movement symptoms such as dystonia, hyperreflexia, etc. Brain iron accumulation can be diagnosed through MRI imaging and is hypothesized to be the cause of oxidative stress, leading to the degeneration of brain tissue. There are four main types of NBIA: pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MKAN), and beta-propeller protein-associated neurodegeneration (BPAN). There are no causative therapies for these diseases, but iron chelators have been shown to have potential toward treating NBIA. Three chelators are investigated in this Review: deferoxamine (DFO), desferasirox (DFS), and deferiprone (DFP). DFO has been investigated to treat neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, dose-related toxicity in these studies, as well as in PKAN studies, have shown that the drug still requires more development before it can be applied toward NBIA cases. Iron chelation therapies other than the ones currently in clinical use have not yet reached clinical studies, but they may possess characteristics that would allow them to access the brain in ways that current chelators cannot. Intranasal formulations are an attractive dosage form to study for chelation therapy, as this method of delivery can bypass the blood-brain barrier and access the CNS. Gene therapy differs from iron chelation therapy as it is a causal treatment of the disease, whereas iron chelators only target the disease progression of NBIA. Because the pathophysiology of NBIA diseases is still unclear, future courses of action should be focused on causative treatment; however, iron chelation therapy is the current best course of action.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"119–130"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Strigolactones on NLRP3 Activation, Nitrosative Stress, and Antioxidant Mox Phenotype: In Vitro and In Silico Evidence 三苯甲内酯对 NLRP3 活化、亚硝基应激和抗氧化莫克斯表型的影响:体外和硅学证据
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-02-19 DOI: 10.1021/acsbiomedchemau.3c00063
Gizem Antika, Zeynep Özlem Cinar, Serhat Dönmez, Esma Seçen, Mehmet Özbil, Cristina Prandi and Tugba Boyunegmez Tumer*, 

Phytohormones have significant roles in redox metabolism, inflammatory responses, and cellular survival mechanisms within the microenvironment of the mammalian brain. Herein, we identified the mammalian molecular targets of three representative strigolactone (SL) analogues structurally derived from apocarotenoids and the functional equivalent of plant hormones. All tested SL analogues have an inhibitory effect on NLRP3 inflammasome-mediated IL-1β release in murine microglial cells. However, IND and EGO10 became prominent among them due to their high potency at low micromolar doses. All SL analogues dose-dependently suppressed the release and expression of proinflammatory factors. For EGO10 and IND, IC50 values for iNOS-associated NO secretion were as low as 1.72 and 1.02 μM, respectively. In silico analyses revealed that (S)-EGO10 interacted with iNOS, NLRP3, and Keap1 ligands with the highest binding affinities among all stereoisomeric SL analogues. Although all compounds were effective in microglial Mox phenotype polarization, 4-Br-debranone exhibited a differential pattern for upregulating Nrf2-driven downstream enzymes.

植物激素在哺乳动物大脑微环境的氧化还原代谢、炎症反应和细胞存活机制中发挥着重要作用。在这里,我们确定了三种具有代表性的芪内酯(SL)类似物的哺乳动物分子靶标,这些类似物在结构上源自类胡萝卜素,在功能上等同于植物激素。所有测试的SL类似物都对小鼠微神经胶质细胞中NLRP3炎性体介导的IL-1β释放有抑制作用。然而,IND和EGO10因其在低微摩尔剂量下的高效力而成为其中的佼佼者。所有 SL 类似物都能剂量依赖性地抑制促炎因子的释放和表达。对于 EGO10 和 IND,iNOS 相关 NO 分泌的 IC50 值分别低至 1.72 和 1.02 μM。硅学分析表明,在所有立体异构体 SL 类似物中,(S)-EGO10 与 iNOS、NLRP3 和 Keap1 配体的结合亲和力最高。虽然所有化合物都对小胶质细胞 Mox 表型极化有效,但 4-Br-debranone 在上调 Nrf2 驱动的下游酶方面表现出不同的模式。
{"title":"Effects of Strigolactones on NLRP3 Activation, Nitrosative Stress, and Antioxidant Mox Phenotype: In Vitro and In Silico Evidence","authors":"Gizem Antika,&nbsp;Zeynep Özlem Cinar,&nbsp;Serhat Dönmez,&nbsp;Esma Seçen,&nbsp;Mehmet Özbil,&nbsp;Cristina Prandi and Tugba Boyunegmez Tumer*,&nbsp;","doi":"10.1021/acsbiomedchemau.3c00063","DOIUrl":"10.1021/acsbiomedchemau.3c00063","url":null,"abstract":"<p >Phytohormones have significant roles in redox metabolism, inflammatory responses, and cellular survival mechanisms within the microenvironment of the mammalian brain. Herein, we identified the mammalian molecular targets of three representative strigolactone (SL) analogues structurally derived from apocarotenoids and the functional equivalent of plant hormones. All tested SL analogues have an inhibitory effect on NLRP3 inflammasome-mediated IL-1β release in murine microglial cells. However, IND and EGO10 became prominent among them due to their high potency at low micromolar doses. All SL analogues dose-dependently suppressed the release and expression of proinflammatory factors. For EGO10 and IND, IC<sub>50</sub> values for iNOS-associated NO secretion were as low as 1.72 and 1.02 μM, respectively. In silico analyses revealed that (<i>S</i>)-EGO10 interacted with iNOS, NLRP3, and Keap1 ligands with the highest binding affinities among all stereoisomeric SL analogues. Although all compounds were effective in microglial Mox phenotype polarization, 4-Br-debranone exhibited a differential pattern for upregulating Nrf2-driven downstream enzymes.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 3","pages":"131–136"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139918472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seeing Is Believing: Advances in Biological Imaging 眼见为实:生物成像技术的进步
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-30 DOI: 10.1021/acsbiomedchemau.3c00075
Xin Zhang*,  and , Squire J. Booker*, 
{"title":"Seeing Is Believing: Advances in Biological Imaging","authors":"Xin Zhang*,&nbsp; and ,&nbsp;Squire J. Booker*,&nbsp;","doi":"10.1021/acsbiomedchemau.3c00075","DOIUrl":"10.1021/acsbiomedchemau.3c00075","url":null,"abstract":"","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 1","pages":"1–3"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Fidelity Assay Based on Turn-Off Fluorescence to Detect the Perturbations of Cellular Proteostasis 基于熄灭荧光的高保真分析法检测细胞蛋白稳态的干扰
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-19 DOI: 10.1021/acsbiomedchemau.3c00012
Conner Hoelzel, Yulong Bai, Mengdie Wang, Yu Liu* and Xin Zhang*, 

The persistence of neurodegenerative diseases has necessitated the development of new strategies to monitor protein homeostasis (proteostasis). Previous efforts in our laboratory have focused on the development of fluorogenic strategies to observe the onset and progression of proteostatic stress. These works utilized solvatochromic and viscosity sensitive fluorophores to sense protein folded states, enabling stressor screening with an increase in the emission intensity upon aggregation. In this work, we present a novel, high-fidelity assay to detect perturbations of cellular proteostasis, where the fluorescence intensity decreases with the onset of proteostatic stress. Utilizing a fluorogenic, hydroxymethyl silicon-rhodamine probe to differentiate between protein folded states, we establish the validity of this technology in living cells by demonstrating a two-fold difference in fluorescence intensity between unstressed and stressed conditions.

神经退行性疾病久治不愈,因此有必要开发监测蛋白质稳态(proteostasis)的新策略。我们实验室之前的工作重点是开发荧光策略,以观察蛋白稳态压力的发生和发展。这些工作利用溶解变色和粘度敏感荧光团来感知蛋白质的折叠状态,从而通过增加聚集时的发射强度来筛选应激源。在这项工作中,我们提出了一种新颖、高保真的检测方法,用于检测细胞蛋白稳态的扰动,荧光强度会随着蛋白稳态应激的发生而降低。利用含氟羟甲基硅-罗丹明探针来区分蛋白质折叠状态,我们在活细胞中证明了这一技术的有效性,在未受压和受压条件下荧光强度相差两倍。
{"title":"High-Fidelity Assay Based on Turn-Off Fluorescence to Detect the Perturbations of Cellular Proteostasis","authors":"Conner Hoelzel,&nbsp;Yulong Bai,&nbsp;Mengdie Wang,&nbsp;Yu Liu* and Xin Zhang*,&nbsp;","doi":"10.1021/acsbiomedchemau.3c00012","DOIUrl":"10.1021/acsbiomedchemau.3c00012","url":null,"abstract":"<p >The persistence of neurodegenerative diseases has necessitated the development of new strategies to monitor protein homeostasis (proteostasis). Previous efforts in our laboratory have focused on the development of fluorogenic strategies to observe the onset and progression of proteostatic stress. These works utilized solvatochromic and viscosity sensitive fluorophores to sense protein folded states, enabling stressor screening with an increase in the emission intensity upon aggregation. In this work, we present a novel, high-fidelity assay to detect perturbations of cellular proteostasis, where the fluorescence intensity decreases with the onset of proteostatic stress. Utilizing a fluorogenic, hydroxymethyl silicon-rhodamine probe to differentiate between protein folded states, we establish the validity of this technology in living cells by demonstrating a two-fold difference in fluorescence intensity between unstressed and stressed conditions.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"4 2","pages":"111–118"},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Bio & Med Chem Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1