首页 > 最新文献

Japanese Journal of Statistics and Data Science最新文献

英文 中文
A weighted score confidence interval for a binomial proportion 二项比例的加权分数置信区间
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2022-02-16 DOI: 10.1007/s42081-022-00146-2
Victor Mooto Nawa
{"title":"A weighted score confidence interval for a binomial proportion","authors":"Victor Mooto Nawa","doi":"10.1007/s42081-022-00146-2","DOIUrl":"https://doi.org/10.1007/s42081-022-00146-2","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"5 1","pages":"133 - 147"},"PeriodicalIF":1.3,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47620088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving kernel-based nonparametric regression for circular–linear data 改进基于核的非参数循环线性回归
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-31 DOI: 10.1007/s42081-022-00145-3
Yasuhito Tsuruta, Masahiko Sagae
{"title":"Improving kernel-based nonparametric regression for circular–linear data","authors":"Yasuhito Tsuruta, Masahiko Sagae","doi":"10.1007/s42081-022-00145-3","DOIUrl":"https://doi.org/10.1007/s42081-022-00145-3","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"5 1","pages":"111 - 131"},"PeriodicalIF":1.3,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53297295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian fused lasso modeling via horseshoe prior 基于马蹄先验的贝叶斯融合套索建模
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-20 DOI: 10.1007/s42081-023-00213-2
Yuko Kakikawa, Kaito Shimamura, Shuichi Kawano
{"title":"Bayesian fused lasso modeling via horseshoe prior","authors":"Yuko Kakikawa, Kaito Shimamura, Shuichi Kawano","doi":"10.1007/s42081-023-00213-2","DOIUrl":"https://doi.org/10.1007/s42081-023-00213-2","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42997566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Least-squares estimators based on the Adams method for stochastic differential equations with small Lévy noise 基于Adams方法的小Lévy噪声随机微分方程的最小二乘估计
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-18 DOI: 10.1007/s42081-022-00155-1
Mitsuki Kobayashi, Y. Shimizu
{"title":"Least-squares estimators based on the Adams method for stochastic differential equations with small Lévy noise","authors":"Mitsuki Kobayashi, Y. Shimizu","doi":"10.1007/s42081-022-00155-1","DOIUrl":"https://doi.org/10.1007/s42081-022-00155-1","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"5 1","pages":"217 - 240"},"PeriodicalIF":1.3,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48900408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Inferences on cumulative incidence function for middle censored survival data with Weibull regression 用威布尔回归对中间截尾生存数据累积关联函数的推断
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-14 DOI: 10.1007/s42081-021-00142-y
H. Rehman, N. Chandra
{"title":"Inferences on cumulative incidence function for middle censored survival data with Weibull regression","authors":"H. Rehman, N. Chandra","doi":"10.1007/s42081-021-00142-y","DOIUrl":"https://doi.org/10.1007/s42081-021-00142-y","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"5 1","pages":"65 - 86"},"PeriodicalIF":1.3,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53297203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Spatial analysis of subjective well-being in Japan 日本主观幸福感的空间分析
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-06 DOI: 10.1007/s42081-021-00143-x
Anqi Li, Takaki Sato, Y. Matsuda
{"title":"Spatial analysis of subjective well-being in Japan","authors":"Anqi Li, Takaki Sato, Y. Matsuda","doi":"10.1007/s42081-021-00143-x","DOIUrl":"https://doi.org/10.1007/s42081-021-00143-x","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"5 1","pages":"87 - 110"},"PeriodicalIF":1.3,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49371693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Exploring the impact of air pollution on COVID-19 admitted cases: Evidence from vector error correction model (VECM) approach in explaining the relationship between air pollutants towards COVID-19 cases in Kuwait. 探索空气污染对COVID-19入院病例的影响:来自矢量误差修正模型(VECM)方法的证据,用于解释科威特空气污染物与COVID-19病例之间的关系。
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 Epub Date: 2022-06-28 DOI: 10.1007/s42081-022-00165-z
Ahmad R Alsaber, Parul Setiya, Ahmad T Al-Sultan, Jiazhu Pan

In urban areas, air pollution is one of the most serious global environmental issues. Using time-series approaches, this study looked into the validity of the relationship between air pollution and COVID-19 hospitalization. This time series research was carried out in the state of Kuwait; stationarity test, cointegration test, Granger causality and stability test, and test on multivariate time-series using the Vector Error Correction Model (VECM) technique. The findings reveal that the concentration rate of air pollutants ( O 3 , SO 2 , NO 2 , CO , and PM 10 ) has an effect on COVID-19 admitted cases via Granger-cause. The Granger causation test shows that the concentration rate of air pollutants ( O 3 , PM 10 , NO 2 , temperature and wind speed) influences and predicts the COVID-19 admitted cases. The findings suggest that sulfur dioxide ( SO 2 ), NO 2 , temperature, and wind speed induce an increase in COVID-19 admitted cases in the short term according to VECM analysis. The evidence of a positive long-run association between COVID-19 admitted cases and environmental air pollution might be shown in the cointegration test and the VECM. There is an affirmation that the usage of air pollutants ( O 3 , SO 2 , NO 2 , CO , and PM 10 ) has a significant impact on COVID-19-admitted cases' prediction and its explained about 24% of increasing COVID-19 admitted cases in Kuwait.

在城市地区,空气污染是最严重的全球环境问题之一。本研究采用时间序列方法研究了空气污染与COVID-19住院之间关系的有效性。这项时间序列研究是在科威特进行的;平稳性检验、协整检验、格兰杰因果关系和稳定性检验,以及使用向量误差修正模型(VECM)技术对多变量时间序列进行检验。研究结果表明,空气污染物(o3、so2、no2、CO和PM 10)的浓度率对新冠肺炎住院病例有影响。格兰杰因果检验表明,大气污染物(o3、pm10、no2、温度和风速)浓度率对新冠肺炎住院病例有影响和预测作用。研究结果表明,根据VECM分析,二氧化硫(so2)、二氧化氮(NO 2)、温度和风速在短期内导致新冠肺炎住院病例增加。COVID-19入院病例与环境空气污染之间长期正相关的证据可能会在协整检验和VECM中显示。可以肯定的是,空气污染物(o3、so2、no2、CO和pm10)的使用对COVID-19入院病例的预测有重大影响,它解释了科威特COVID-19入院病例增加的24%左右。
{"title":"Exploring the impact of air pollution on COVID-19 admitted cases: Evidence from vector error correction model (VECM) approach in explaining the relationship between air pollutants towards COVID-19 cases in Kuwait.","authors":"Ahmad R Alsaber,&nbsp;Parul Setiya,&nbsp;Ahmad T Al-Sultan,&nbsp;Jiazhu Pan","doi":"10.1007/s42081-022-00165-z","DOIUrl":"https://doi.org/10.1007/s42081-022-00165-z","url":null,"abstract":"<p><p>In urban areas, air pollution is one of the most serious global environmental issues. Using time-series approaches, this study looked into the validity of the relationship between air pollution and COVID-19 hospitalization. This time series research was carried out in the state of Kuwait; stationarity test, cointegration test, Granger causality and stability test, and test on multivariate time-series using the Vector Error Correction Model (VECM) technique. The findings reveal that the concentration rate of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , <math><mtext>CO</mtext></math> , and <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> ) has an effect on COVID-19 admitted cases via Granger-cause. The Granger causation test shows that the concentration rate of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , temperature and wind speed) influences and predicts the COVID-19 admitted cases. The findings suggest that sulfur dioxide ( <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> ), <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , temperature, and wind speed induce an increase in COVID-19 admitted cases in the short term according to VECM analysis. The evidence of a positive long-run association between COVID-19 admitted cases and environmental air pollution might be shown in the cointegration test and the VECM. There is an affirmation that the usage of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , <math><mtext>CO</mtext></math> , and <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> ) has a significant impact on COVID-19-admitted cases' prediction and its explained about 24% of increasing COVID-19 admitted cases in Kuwait.</p>","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":" ","pages":"379-406"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40482917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Shiga University's endeavor to promote human resources development for data science in Japan. 滋贺大学致力于促进日本数据科学领域的人力资源开发
IF 1.1 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 Epub Date: 2022-03-27 DOI: 10.1007/s42081-022-00151-5
Takuma Tanaka, Tetsuto Himeno, Kaoru Fueda

In 2017, Shiga University established the Faculty of Data Science, which was the first faculty in Japan specializing in data science and statistics. This paper reports the Faculty's historical context, curricula, and collaboration with industry and other universities. The career paths of the graduates and the massive open online courses and textbooks provided by the Faculty of Data Science are also summarized.

2017 年,滋贺大学成立了数据科学学院,这是日本首个专门从事数据科学与统计的学院。本文报告了该学院的历史背景、课程设置以及与业界和其他大学的合作。此外,还总结了毕业生的就业方向以及数据科学系提供的大规模开放式在线课程和教科书。
{"title":"Shiga University's endeavor to promote human resources development for data science in Japan.","authors":"Takuma Tanaka, Tetsuto Himeno, Kaoru Fueda","doi":"10.1007/s42081-022-00151-5","DOIUrl":"10.1007/s42081-022-00151-5","url":null,"abstract":"<p><p>In 2017, Shiga University established the Faculty of Data Science, which was the first faculty in Japan specializing in data science and statistics. This paper reports the Faculty's historical context, curricula, and collaboration with industry and other universities. The career paths of the graduates and the massive open online courses and textbooks provided by the Faculty of Data Science are also summarized.</p>","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"5 1","pages":"747-755"},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8958343/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43496285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of optimal prevention strategy for COVID-19 based on multi-agent simulation. 基于多智能体仿真的COVID-19最优预防策略确定
IF 1.3 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 Epub Date: 2022-06-14 DOI: 10.1007/s42081-022-00163-1
Satoki Fujita, Ryo Kiguchi, Yuki Yoshida, Yoshitake Kitanishi

This study proposes a direction for the utilization of multi-agent simulation (MAS) to consider an optimal prevention strategy for the spread of the coronavirus disease of 2019 (COVID-19) through a pandemic modeling example in Japan. MAS can flexibly express macroscopic phenomena formed through the interaction of micro-agents modeled to act autonomously. The use of MAS can provide a variety of recommendations for bringing a pandemic under control, even in the case of the COVID-19 pandemic, which has become more intense as of 2021. However, models that do not consider individual heterogeneity, such as analytical Susceptible-Exposed-Infectious-Recovered (SEIR) models, are often used as predictive models for infectious diseases and the main reference for decision-making. In this study, we show that by constructing a MAS that simulates a metropolitan city in Japan in a simple manner while considering the heterogeneity of age and other background information, we can capture the effects of various measures such as vaccinations on the spread of infections in a more realistic setting. Moreover, it is possible to offer various recommendations for optimal strategies to suppress a pandemic by combining reinforcement learning with MAS. This study explicates the potential of MAS in the development of strategies to prevent the spread of infection.

本研究通过日本的大流行建模示例,为利用多智能体仿真(MAS)考虑2019年冠状病毒病(COVID-19)传播的最佳预防策略提供了方向。MAS可以灵活地表达通过微主体相互作用形成的宏观现象,建模为自主行为。MAS的使用可以为控制大流行提供各种建议,即使在2019冠状病毒病大流行的情况下也是如此,该流行病自2021年以来变得更加严重。然而,不考虑个体异质性的模型,如分析易感-暴露-感染-恢复(SEIR)模型,经常被用作传染病的预测模型和决策的主要参考。在这项研究中,我们表明,通过构建一个简单的MAS,在考虑年龄和其他背景信息的异质性的同时,以一种简单的方式模拟日本的大都市,我们可以在更现实的环境中捕捉各种措施(如接种疫苗)对感染传播的影响。此外,通过将强化学习与MAS相结合,可以为抑制大流行的最佳策略提供各种建议。这项研究阐明了MAS在制定预防感染传播策略方面的潜力。
{"title":"Determination of optimal prevention strategy for COVID-19 based on multi-agent simulation.","authors":"Satoki Fujita,&nbsp;Ryo Kiguchi,&nbsp;Yuki Yoshida,&nbsp;Yoshitake Kitanishi","doi":"10.1007/s42081-022-00163-1","DOIUrl":"https://doi.org/10.1007/s42081-022-00163-1","url":null,"abstract":"<p><p>This study proposes a direction for the utilization of multi-agent simulation (MAS) to consider an optimal prevention strategy for the spread of the coronavirus disease of 2019 (COVID-19) through a pandemic modeling example in Japan. MAS can flexibly express macroscopic phenomena formed through the interaction of micro-agents modeled to act autonomously. The use of MAS can provide a variety of recommendations for bringing a pandemic under control, even in the case of the COVID-19 pandemic, which has become more intense as of 2021. However, models that do not consider individual heterogeneity, such as analytical Susceptible-Exposed-Infectious-Recovered (SEIR) models, are often used as predictive models for infectious diseases and the main reference for decision-making. In this study, we show that by constructing a MAS that simulates a metropolitan city in Japan in a simple manner while considering the heterogeneity of age and other background information, we can capture the effects of various measures such as vaccinations on the spread of infections in a more realistic setting. Moreover, it is possible to offer various recommendations for optimal strategies to suppress a pandemic by combining reinforcement learning with MAS. This study explicates the potential of MAS in the development of strategies to prevent the spread of infection.</p>","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":" ","pages":"339-361"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40164743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Special feature: statistics for COVID-19 pandemic data. 专题:新冠肺炎疫情数据统计
IF 1.1 Q3 STATISTICS & PROBABILITY Pub Date : 2022-01-01 Epub Date: 2022-06-02 DOI: 10.1007/s42081-022-00166-y
Koji Kurihara
{"title":"Special feature: statistics for COVID-19 pandemic data.","authors":"Koji Kurihara","doi":"10.1007/s42081-022-00166-y","DOIUrl":"10.1007/s42081-022-00166-y","url":null,"abstract":"","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":"5 1","pages":"275-277"},"PeriodicalIF":1.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48638092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Japanese Journal of Statistics and Data Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1