首页 > 最新文献

Quantum Machine Intelligence最新文献

英文 中文
Implementation of a Hamming distance-like genomic quantum classifier using inner products on ibmqx2 and ibmq_16_melbourne. 在ibmqx2和ibmq_16_melbourne上使用内积实现类似汉明距离的基因组量子分类器。
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2020-07-17 DOI: 10.1007/s42484-020-00017-7
Kunal Kathuria, Aakrosh Ratan, Michael McConnell, Stefan Bekiranov

Motivated by the problem of classifying individuals with a disease versus controls using a functional genomic attribute as input, we present relatively efficient general purpose inner product-based kernel classifiers to classify the test as a normal or disease sample. We encode each training sample as a string of 1 s (presence) and 0 s (absence) representing the attribute's existence across ordered physical blocks of the subdivided genome. Having binary-valued features allows for highly efficient data encoding in the computational basis for classifiers relying on binary operations. Given that a natural distance between binary strings is Hamming distance, which shares properties with bit-string inner products, our two classifiers apply different inner product measures for classification. The active inner product (AIP) is a direct dot product-based classifier whereas the symmetric inner product (SIP) classifies upon scoring correspondingly matching genomic attributes. SIP is a strongly Hamming distance-based classifier generally applicable to binary attribute-matching problems whereas AIP has general applications as a simple dot product-based classifier. The classifiers implement an inner product between N = 2 n dimension test and train vectors using n Fredkin gates while the training sets are respectively entangled with the class-label qubit, without use of an ancilla. Moreover, each training class can be composed of an arbitrary number m of samples that can be classically summed into one input string to effectively execute all test-train inner products simultaneously. Thus, our circuits require the same number of qubits for any number of training samples and are O ( log N ) in gate complexity after the states are prepared. Our classifiers were implemented on ibmqx2 (IBM-Q-team 2019b) and ibmq_16_melbourne (IBM-Q-team 2019a). The latter allowed encoding of 64 training features across the genome.

由于使用功能基因组属性作为输入对患有疾病的个体与对照组进行分类的问题,我们提出了相对有效的通用内部基于产品的内核分类器,将测试分类为正常样本或疾病样本。我们将每个训练样本编码为1秒(存在)和0秒(不存在)的字符串,表示属性在细分基因组的有序物理块中的存在。具有二进制值的特征可以在依赖于二进制操作的分类器的计算基础中实现高效的数据编码。假设二进制字符串之间的自然距离是汉明距离,它与位串内积具有相同的性质,我们的两个分类器采用不同的内积度量进行分类。主动内积(AIP)是直接基于点积的分类器,而对称内积(SIP)是根据相应匹配的基因组属性进行分类的。SIP是一种强基于汉明距离的分类器,通常适用于二元属性匹配问题,而AIP作为一种简单的基于点积的分类器具有一般的应用。分类器使用N个Fredkin门实现N = 2n维测试和训练向量之间的内积,而训练集分别与类标签量子比特纠缠,而不使用辅助。此外,每个训练类可以由任意数量的m个样本组成,这些样本可以经典地求和为一个输入字符串,从而有效地同时执行所有测试训练内部产品。因此,对于任何数量的训练样本,我们的电路需要相同数量的量子比特,并且在状态准备后,门复杂度为O (log N)。我们的分类器在ibmqx2 (IBM-Q-team 2019b)和ibmq_16_melbourne (IBM-Q-team 2019a)上实现。后者允许在整个基因组中编码64个训练特征。
{"title":"Implementation of a Hamming distance-like genomic quantum classifier using inner products on ibmqx2 and ibmq_16_melbourne.","authors":"Kunal Kathuria,&nbsp;Aakrosh Ratan,&nbsp;Michael McConnell,&nbsp;Stefan Bekiranov","doi":"10.1007/s42484-020-00017-7","DOIUrl":"https://doi.org/10.1007/s42484-020-00017-7","url":null,"abstract":"<p><p>Motivated by the problem of classifying individuals with a disease versus controls using a functional genomic attribute as input, we present relatively efficient general purpose inner product-based kernel classifiers to classify the test as a normal or disease sample. We encode each training sample as a string of 1 s (presence) and 0 s (absence) representing the attribute's existence across ordered physical blocks of the subdivided genome. Having binary-valued features allows for highly efficient data encoding in the computational basis for classifiers relying on binary operations. Given that a natural distance between binary strings is Hamming distance, which shares properties with bit-string inner products, our two classifiers apply different inner product measures for classification. The active inner product (AIP) is a direct dot product-based classifier whereas the symmetric inner product (SIP) classifies upon scoring correspondingly matching genomic attributes. SIP is a strongly Hamming distance-based classifier generally applicable to binary attribute-matching problems whereas AIP has general applications as a simple dot product-based classifier. The classifiers implement an inner product between <i>N</i> = 2 <sup><i>n</i></sup> dimension test and train vectors using <i>n</i> Fredkin gates while the training sets are respectively entangled with the class-label qubit, without use of an ancilla. Moreover, each training class can be composed of an arbitrary number <i>m</i> of samples that can be classically summed into one input string to effectively execute all test-train inner products simultaneously. Thus, our circuits require the same number of qubits for any number of training samples and are <math><mi>O</mi> <mo>(</mo> <mi>log</mi> <mi>N</mi> <mo>)</mo></math> in gate complexity after the states are prepared. Our classifiers were implemented on ibmqx2 (IBM-Q-team 2019b) and ibmq_16_melbourne (IBM-Q-team 2019a). The latter allowed encoding of 64 training features across the genome.</p>","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"2 1","pages":"1-26"},"PeriodicalIF":4.8,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42484-020-00017-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38340063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
On the convergence of projective-simulation-based reinforcement learning in Markov decision processes. 论马尔可夫决策过程中基于投影模拟的强化学习的收敛性
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2020-11-05 DOI: 10.1007/s42484-020-00023-9
W L Boyajian, J Clausen, L M Trenkwalder, V Dunjko, H J Briegel

In recent years, the interest in leveraging quantum effects for enhancing machine learning tasks has significantly increased. Many algorithms speeding up supervised and unsupervised learning were established. The first framework in which ways to exploit quantum resources specifically for the broader context of reinforcement learning were found is projective simulation. Projective simulation presents an agent-based reinforcement learning approach designed in a manner which may support quantum walk-based speedups. Although classical variants of projective simulation have been benchmarked against common reinforcement learning algorithms, very few formal theoretical analyses have been provided for its performance in standard learning scenarios. In this paper, we provide a detailed formal discussion of the properties of this model. Specifically, we prove that one version of the projective simulation model, understood as a reinforcement learning approach, converges to optimal behavior in a large class of Markov decision processes. This proof shows that a physically inspired approach to reinforcement learning can guarantee to converge.

近年来,人们对利用量子效应增强机器学习任务的兴趣明显增加。许多加快有监督和无监督学习的算法已经建立。在更广泛的强化学习背景下,利用量子资源的首个框架是投影模拟。投影模拟提出了一种基于代理的强化学习方法,其设计方式可支持基于量子行走的加速。虽然投影模拟的经典变体已与常见的强化学习算法进行了基准测试,但很少有人对其在标准学习场景中的性能进行正式的理论分析。在本文中,我们对该模型的特性进行了详细的正式讨论。具体来说,我们证明了投影模拟模型的一个版本(可理解为一种强化学习方法)在一大类马尔可夫决策过程中收敛到了最优行为。这一证明表明,物理启发的强化学习方法可以保证收敛。
{"title":"On the convergence of projective-simulation-based reinforcement learning in Markov decision processes.","authors":"W L Boyajian, J Clausen, L M Trenkwalder, V Dunjko, H J Briegel","doi":"10.1007/s42484-020-00023-9","DOIUrl":"10.1007/s42484-020-00023-9","url":null,"abstract":"<p><p>In recent years, the interest in leveraging quantum effects for enhancing machine learning tasks has significantly increased. Many algorithms speeding up supervised and unsupervised learning were established. The first framework in which ways to exploit quantum resources specifically for the broader context of reinforcement learning were found is projective simulation. Projective simulation presents an agent-based reinforcement learning approach designed in a manner which may support quantum walk-based speedups. Although classical variants of projective simulation have been benchmarked against common reinforcement learning algorithms, very few formal theoretical analyses have been provided for its performance in standard learning scenarios. In this paper, we provide a detailed formal discussion of the properties of this model. Specifically, we prove that one version of the projective simulation model, understood as a reinforcement learning approach, converges to optimal behavior in a large class of Markov decision processes. This proof shows that a physically inspired approach to reinforcement learning can guarantee to converge.</p>","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"2 2","pages":"13"},"PeriodicalIF":4.8,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9547619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel methods in Quantum Machine Learning 量子机器学习中的核方法
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-11-15 DOI: 10.1007/s42484-019-00007-4
R. Mengoni, Alessandra Di Pierro
{"title":"Kernel methods in Quantum Machine Learning","authors":"R. Mengoni, Alessandra Di Pierro","doi":"10.1007/s42484-019-00007-4","DOIUrl":"https://doi.org/10.1007/s42484-019-00007-4","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"1 1","pages":"65 - 71"},"PeriodicalIF":4.8,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42484-019-00007-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48366206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
A continuous-variable quantum-inspired algorithm for classical image segmentation 一种受连续变量量子启发的经典图像分割算法
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-11-11 DOI: 10.1007/s42484-019-00009-2
A. Youssry, A. El-Rafei, Ri-gui Zhou
{"title":"A continuous-variable quantum-inspired algorithm for classical image segmentation","authors":"A. Youssry, A. El-Rafei, Ri-gui Zhou","doi":"10.1007/s42484-019-00009-2","DOIUrl":"https://doi.org/10.1007/s42484-019-00009-2","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"1 1","pages":"97 - 111"},"PeriodicalIF":4.8,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42484-019-00009-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44054871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Application of machine intelligence for osteoarthritis classification: a classical implementation and a quantum perspective 机器智能在骨关节炎分类中的应用:经典实现和量子视角
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-10-31 DOI: 10.1007/s42484-019-00008-3
S. Moustakidis, Eirini Christodoulou, E. Papageorgiou, Christos Kokkotis, N. Papandrianos, D. Tsaopoulos
{"title":"Application of machine intelligence for osteoarthritis classification: a classical implementation and a quantum perspective","authors":"S. Moustakidis, Eirini Christodoulou, E. Papageorgiou, Christos Kokkotis, N. Papandrianos, D. Tsaopoulos","doi":"10.1007/s42484-019-00008-3","DOIUrl":"https://doi.org/10.1007/s42484-019-00008-3","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"1 1","pages":"73 - 86"},"PeriodicalIF":4.8,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42484-019-00008-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46472371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Quantum semi-supervised kernel learning 量子半监督核学习
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-09-25 DOI: 10.1007/s42484-021-00053-x
Seyran Saeedi, Ali (Aliakbar) Panahi, Tom Arodz
{"title":"Quantum semi-supervised kernel learning","authors":"Seyran Saeedi, Ali (Aliakbar) Panahi, Tom Arodz","doi":"10.1007/s42484-021-00053-x","DOIUrl":"https://doi.org/10.1007/s42484-021-00053-x","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43494555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Nondestructive classification of quantum states using an algorithmic quantum computer 使用算法量子计算机的量子态无损分类
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-09-12 DOI: 10.1007/s42484-019-00010-9
D. Babukhin, A. Zhukov, W. Pogosov
{"title":"Nondestructive classification of quantum states using an algorithmic quantum computer","authors":"D. Babukhin, A. Zhukov, W. Pogosov","doi":"10.1007/s42484-019-00010-9","DOIUrl":"https://doi.org/10.1007/s42484-019-00010-9","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"1 1","pages":"87 - 96"},"PeriodicalIF":4.8,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42484-019-00010-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48013341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
An evolutionary strategy for finding effective quantum 2-body Hamiltonians of p-body interacting systems 寻找p体相互作用系统有效量子2体哈密顿量的进化策略
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-09-11 DOI: 10.1007/s42484-019-00011-8
G. Acampora, V. Cataudella, P. R. Hegde, P. Lucignano, G. Passarelli, A. Vitiello
{"title":"An evolutionary strategy for finding effective quantum 2-body Hamiltonians of p-body interacting systems","authors":"G. Acampora, V. Cataudella, P. R. Hegde, P. Lucignano, G. Passarelli, A. Vitiello","doi":"10.1007/s42484-019-00011-8","DOIUrl":"https://doi.org/10.1007/s42484-019-00011-8","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"1 1","pages":"113 - 122"},"PeriodicalIF":4.8,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42484-019-00011-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44577699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Charged particle tracking with quantum annealing optimization 基于量子退火优化的带电粒子跟踪
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-08-13 DOI: 10.1007/s42484-021-00054-w
Alexander Zlokapa, A. Anand, J. Vlimant, Javier Mauricio Duarte, Joshua Job, Daniel A. Lidar, M. Spiropulu
{"title":"Charged particle tracking with quantum annealing optimization","authors":"Alexander Zlokapa, A. Anand, J. Vlimant, Javier Mauricio Duarte, Joshua Job, Daniel A. Lidar, M. Spiropulu","doi":"10.1007/s42484-021-00054-w","DOIUrl":"https://doi.org/10.1007/s42484-021-00054-w","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42986766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Optimizing quantum heuristics with meta-learning 优化量子启发式与元学习
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2019-08-08 DOI: 10.1007/s42484-020-00022-w
M. Wilson, Rachel Stromswold, F. Wudarski, Stuart Hadfield, N. Tubman, E. Rieffel
{"title":"Optimizing quantum heuristics with meta-learning","authors":"M. Wilson, Rachel Stromswold, F. Wudarski, Stuart Hadfield, N. Tubman, E. Rieffel","doi":"10.1007/s42484-020-00022-w","DOIUrl":"https://doi.org/10.1007/s42484-020-00022-w","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42484-020-00022-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43483702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 57
期刊
Quantum Machine Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1