Pub Date : 2023-04-04DOI: 10.1007/s42001-023-00205-y
Alexey Bessudnov, Denis Tarasov, Viacheslav Panasovets, V. Kostenko, I. Smirnov, V. Uspenskiy
{"title":"Predicting perceived ethnicity with data on personal names in Russia","authors":"Alexey Bessudnov, Denis Tarasov, Viacheslav Panasovets, V. Kostenko, I. Smirnov, V. Uspenskiy","doi":"10.1007/s42001-023-00205-y","DOIUrl":"https://doi.org/10.1007/s42001-023-00205-y","url":null,"abstract":"","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"21 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88983062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-04DOI: 10.1007/s42001-023-00200-3
Johannes Langguth, Daniel Thilo Schroeder, Petra Filkuková, Stefan Brenner, Jesper Phillips, Konstantin Pogorelov
The COVID-19 pandemic has been accompanied by a surge of misinformation on social media which covered a wide range of different topics and contained many competing narratives, including conspiracy theories. To study such conspiracy theories, we created a dataset of 3495 tweets with manual labeling of the stance of each tweet w.r.t. 12 different conspiracy topics. The dataset thus contains almost 42,000 labels, each of which determined by majority among three expert annotators. The dataset was selected from COVID-19 related Twitter data spanning from January 2020 to June 2021 using a list of 54 keywords. The dataset can be used to train machine learning based classifiers for both stance and topic detection, either individually or simultaneously. BERT was used successfully for the combined task. The dataset can also be used to further study the prevalence of different conspiracy narratives. To this end we qualitatively analyze the tweets, discussing the structure of conspiracy narratives that are frequently found in the dataset. Furthermore, we illustrate the interconnection between the conspiracy categories as well as the keywords.
{"title":"COCO: an annotated Twitter dataset of COVID-19 conspiracy theories.","authors":"Johannes Langguth, Daniel Thilo Schroeder, Petra Filkuková, Stefan Brenner, Jesper Phillips, Konstantin Pogorelov","doi":"10.1007/s42001-023-00200-3","DOIUrl":"10.1007/s42001-023-00200-3","url":null,"abstract":"<p><p>The COVID-19 pandemic has been accompanied by a surge of misinformation on social media which covered a wide range of different topics and contained many competing narratives, including conspiracy theories. To study such conspiracy theories, we created a dataset of 3495 tweets with manual labeling of the stance of each tweet w.r.t. 12 different conspiracy topics. The dataset thus contains almost 42,000 labels, each of which determined by majority among three expert annotators. The dataset was selected from COVID-19 related Twitter data spanning from January 2020 to June 2021 using a list of 54 keywords. The dataset can be used to train machine learning based classifiers for both stance and topic detection, either individually or simultaneously. BERT was used successfully for the combined task. The dataset can also be used to further study the prevalence of different conspiracy narratives. To this end we qualitatively analyze the tweets, discussing the structure of conspiracy narratives that are frequently found in the dataset. Furthermore, we illustrate the interconnection between the conspiracy categories as well as the keywords.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":" ","pages":"1-42"},"PeriodicalIF":3.2,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9717507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-28DOI: 10.1007/s42001-023-00203-0
Prateeksha Dawn Davidson, Thanujah Muniandy, Dhivya Karmegam
Vaccination has been a hot topic in the present COVID-19 context. The government, public health stakeholders and media are all concerned about how to get the people vaccinated. The study was intended to explore the perception and emotions of the Indians citizens toward COVID-19 vaccine from Twitter messages. The tweets were collected for the period of 6 months, from mid-January to June, 2021 using hash-tags and keywords specific to India. Topics and emotions from the tweets were extracted using Latent Dirichlet Allocation (LDA) method and National Research Council (NRC) Lexicon, respectively. Theme, sentiment and emotion wise engagement and reachability metrics were assessed. Hash-tag frequency of COVID-19 vaccine brands were also identified and evaluated. Information regarding 'Co-WIN app and availability of vaccine' was widely discussed and also received highest engagement and reachability among Twitter users. Among the various emotions, trust was expressed the most, which highlights the acceptance of vaccines among the Indian citizens. The hash-tags frequency of vaccine brands shows that Covishield was popular in the month of March 2021, and Covaxin in April 2021. The results from the study will help stakeholders to efficiently use social media to disseminate COVID-19 vaccine information on popular concerns. This in turn will encourage citizens to be vaccinated and achieve herd immunity. Similar methodology can be adopted in future to understand the perceptions and concerns of people in emergency situations.
Supplementary information: The online version contains supplementary material available at 10.1007/s42001-023-00203-0.
{"title":"Perception of COVID-19 vaccination among Indian Twitter users: computational approach.","authors":"Prateeksha Dawn Davidson, Thanujah Muniandy, Dhivya Karmegam","doi":"10.1007/s42001-023-00203-0","DOIUrl":"10.1007/s42001-023-00203-0","url":null,"abstract":"<p><p>Vaccination has been a hot topic in the present COVID-19 context. The government, public health stakeholders and media are all concerned about how to get the people vaccinated. The study was intended to explore the perception and emotions of the Indians citizens toward COVID-19 vaccine from Twitter messages. The tweets were collected for the period of 6 months, from mid-January to June, 2021 using hash-tags and keywords specific to India. Topics and emotions from the tweets were extracted using Latent Dirichlet Allocation (LDA) method and National Research Council (NRC) Lexicon, respectively. Theme, sentiment and emotion wise engagement and reachability metrics were assessed. Hash-tag frequency of COVID-19 vaccine brands were also identified and evaluated. Information regarding '<i>Co-WIN</i> app and availability of vaccine' was widely discussed and also received highest engagement and reachability among Twitter users. Among the various emotions, trust was expressed the most, which highlights the acceptance of vaccines among the Indian citizens. The hash-tags frequency of vaccine brands shows that Covishield was popular in the month of March 2021, and Covaxin in April 2021. The results from the study will help stakeholders to efficiently use social media to disseminate COVID-19 vaccine information on popular concerns. This in turn will encourage citizens to be vaccinated and achieve herd immunity. Similar methodology can be adopted in future to understand the perceptions and concerns of people in emergency situations.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42001-023-00203-0.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":" ","pages":"1-20"},"PeriodicalIF":3.2,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9709245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To effectively design policies and implement measures for addressing problems faced by people during these difficult times of pandemic, it is critical to have a clear vision of the problems people are freely talking about. One of the ways is to analyze social media feeds e.g., tweets, which has become one of the primary ways people express their views on various socioeconomic issues and on-ground effectiveness of measures adopted to address these issues. In this work, we attempt to uncover various socioeconomic issues, which are giving rise to negative and positive sentiments and their trends across geographies over a course of one year of the pandemic. We also try identifying similarities and differences in opinions as they vary across gender as the time passes through the crisis. Many previous works have analyzed sentiments in context of vaccines, fatalities, and lockdowns; however, socioeconomic issues did not receive full attention. We found that sentiments of people with respect to economy are negative across geographies during starting of pandemic. Thereafter, gradually sentiments lift towards positive direction reflecting a sense of improvement in situation. Females appeared to have slightly different concerns and hopes in comparison to males and especially across globe people expressed positive sentiments during new year time. Finally, this work, together with many other similar works on social media analysis gives ground for wide scale adoption of geo-temporal sentiments trend analysis of social media as a tool for uncovering key concerns and effectiveness of measures.
{"title":"Geo-sentiment trends analysis of tweets in context of economy and employment during COVID-19.","authors":"Narendranath Sukhavasi, Janardan Misra, Vikrant Kaulgud, Sanjay Podder","doi":"10.1007/s42001-023-00201-2","DOIUrl":"https://doi.org/10.1007/s42001-023-00201-2","url":null,"abstract":"<p><p>To effectively design policies and implement measures for addressing problems faced by people during these difficult times of pandemic, it is critical to have a clear vision of the problems people are freely talking about. One of the ways is to analyze social media feeds e.g., tweets, which has become one of the primary ways people express their views on various socioeconomic issues and on-ground effectiveness of measures adopted to address these issues. In this work, we attempt to uncover various socioeconomic issues, which are giving rise to negative and positive sentiments and their trends across geographies over a course of one year of the pandemic. We also try identifying similarities and differences in opinions as they vary across gender as the time passes through the crisis. Many previous works have analyzed sentiments in context of vaccines, fatalities, and lockdowns; however, socioeconomic issues did not receive full attention. We found that sentiments of people with respect to economy are negative across geographies during starting of pandemic. Thereafter, gradually sentiments lift towards positive direction reflecting a sense of improvement in situation. Females appeared to have slightly different concerns and hopes in comparison to males and especially across globe people expressed positive sentiments during new year time. Finally, this work, together with many other similar works on social media analysis gives ground for wide scale adoption of geo-temporal sentiments trend analysis of social media as a tool for uncovering key concerns and effectiveness of measures.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":" ","pages":"1-31"},"PeriodicalIF":3.2,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9717509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.1007/s42001-023-00202-1
M. Lokanan
{"title":"Incorporating machine learning in dispute resolution and settlement process for financial fraud","authors":"M. Lokanan","doi":"10.1007/s42001-023-00202-1","DOIUrl":"https://doi.org/10.1007/s42001-023-00202-1","url":null,"abstract":"","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"44 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80047222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-02DOI: 10.1007/s42001-023-00214-x
W. Fries
{"title":"What motivated mitigation policies? A network-based longitudinal analysis of state-level mitigation strategies","authors":"W. Fries","doi":"10.1007/s42001-023-00214-x","DOIUrl":"https://doi.org/10.1007/s42001-023-00214-x","url":null,"abstract":"","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"11 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84140759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-13DOI: 10.1007/s42001-023-00198-8
Mengyao Xu, Lingshu Hu, G. Cameron
{"title":"Tracking moral divergence with DDR in presidential debates over 60 years","authors":"Mengyao Xu, Lingshu Hu, G. Cameron","doi":"10.1007/s42001-023-00198-8","DOIUrl":"https://doi.org/10.1007/s42001-023-00198-8","url":null,"abstract":"","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"258 1","pages":"339 - 357"},"PeriodicalIF":3.2,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77083694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2022-11-27DOI: 10.1007/s42001-022-00189-1
Waseem Ahmad, Bang Wang, Philecia Martin, Minghua Xu, Han Xu
For a healthy society to exist, it is crucial for the media to focus on disease-related issues so that more people are widely aware of them and reduce health risks. Recently, deep neural networks have become a popular tool for textual sentiment analysis, which can provide valuable insights and real-time monitoring and analysis regarding health issues. In this paper, as part of an effort to develop an effective model that can elicit public sentiment on COVID-19 news, we propose a novel approach Cov-Att-BiLSTM for sentiment analysis of COVID-19 news headlines using deep neural networks. We integrate attention mechanisms, embedding techniques, and semantic level data labeling into the prediction process to enhance the accuracy. To evaluate the proposed approach, we compared it to several deep and machine learning classifiers using various metrics of categorization efficiency and prediction quality, and the experimental results demonstrate its superiority with 0.931 testing accuracy. Furthermore, 73,138 pandemic-related tweets posted on six global channels were analyzed by the proposed approach, which accurately reflects global coverage of COVID-19 news and vaccination.
{"title":"Enhanced sentiment analysis regarding COVID-19 news from global channels.","authors":"Waseem Ahmad, Bang Wang, Philecia Martin, Minghua Xu, Han Xu","doi":"10.1007/s42001-022-00189-1","DOIUrl":"10.1007/s42001-022-00189-1","url":null,"abstract":"<p><p>For a healthy society to exist, it is crucial for the media to focus on disease-related issues so that more people are widely aware of them and reduce health risks. Recently, deep neural networks have become a popular tool for textual sentiment analysis, which can provide valuable insights and real-time monitoring and analysis regarding health issues. In this paper, as part of an effort to develop an effective model that can elicit public sentiment on COVID-19 news, we propose a novel approach Cov-Att-BiLSTM for sentiment analysis of COVID-19 news headlines using deep neural networks. We integrate attention mechanisms, embedding techniques, and semantic level data labeling into the prediction process to enhance the accuracy. To evaluate the proposed approach, we compared it to several deep and machine learning classifiers using various metrics of categorization efficiency and prediction quality, and the experimental results demonstrate its superiority with 0.931 testing accuracy. Furthermore, 73,138 pandemic-related tweets posted on six global channels were analyzed by the proposed approach, which accurately reflects global coverage of COVID-19 news and vaccination.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"6 1","pages":"19-57"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9702932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2022-12-13DOI: 10.1007/s42001-022-00193-5
Cantay Caliskan, Alaz Kilicaslan
Misinformation in the media is produced by hard-to-gauge thought mechanisms employed by individuals or collectivities. In this paper, we shed light on what the country-specific factors of falsehood production in the context of COVID-19 Pandemic might be. Collecting our evidence from the largest misinformation dataset used in the COVID-19 misinformation literature with close to 11,000 pieces of falsehood, we explore patterns of misinformation production by employing a variety of methodological tools including algorithms for text similarity, clustering, network distances, and other statistical tools. Covering news produced in a span of more than 14 months, our paper also differentiates itself by its use of carefully controlled hand-labeling of topics of falsehood. Findings suggest that country-level factors do not provide the strongest support for predicting outcomes of falsehood, except for one phenomenon: in countries with serious press freedom problems and low human development, the mostly unknown authors of misinformation tend to focus on similar content. In addition, the intensity of discussion on animals, predictions and symptoms as part of fake news is the biggest differentiator between nations; whereas news on conspiracies, medical equipment and risk factors offer the least explanation to differentiate. Based on those findings, we discuss some distinct public health and communication strategies to dispel misinformation in countries with particular characteristics. We also emphasize that a global action plan against misinformation is needed given the highly globalized nature of the online media environment.
Supplementary information: The online version contains supplementary material available at 10.1007/s42001-022-00193-5.
{"title":"Varieties of corona news: a cross-national study on the foundations of online misinformation production during the COVID-19 pandemic.","authors":"Cantay Caliskan, Alaz Kilicaslan","doi":"10.1007/s42001-022-00193-5","DOIUrl":"10.1007/s42001-022-00193-5","url":null,"abstract":"<p><p>Misinformation in the media is produced by hard-to-gauge thought mechanisms employed by individuals or collectivities. In this paper, we shed light on what the country-specific factors of falsehood production in the context of COVID-19 Pandemic might be. Collecting our evidence from the largest misinformation dataset used in the COVID-19 misinformation literature with close to 11,000 pieces of falsehood, we explore patterns of misinformation production by employing a variety of methodological tools including algorithms for text similarity, clustering, network distances, and other statistical tools. Covering news produced in a span of more than 14 months, our paper also differentiates itself by its use of carefully controlled hand-labeling of topics of falsehood. Findings suggest that country-level factors do not provide the strongest support for predicting outcomes of falsehood, except for one phenomenon: in countries with serious press freedom problems and low human development, the mostly unknown authors of misinformation tend to focus on similar content. In addition, the intensity of discussion on animals, predictions and symptoms as part of fake news is the biggest differentiator between nations; whereas news on conspiracies, medical equipment and risk factors offer the least explanation to differentiate. Based on those findings, we discuss some distinct public health and communication strategies to dispel misinformation in countries with particular characteristics. We also emphasize that a global action plan against misinformation is needed given the highly globalized nature of the online media environment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42001-022-00193-5.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"6 1","pages":"191-243"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/s42001-022-00197-1
Md Amiruzzaman, Ye Zhao, Stefanie Amiruzzaman, Aryn C Karpinski, Tsung Heng Wu
This study presents a framework to study quantitatively geographical visual diversities of urban neighborhood from a large collection of street-view images using an Artificial Intelligence (AI)-based image segmentation technique. A variety of diversity indices are computed from the extracted visual semantics. They are utilized to discover the relationships between urban visual appearance and socio-demographic variables. This study also validates the reliability of the method with human evaluators. The methodology and results obtained from this study can potentially be used to study urban features, locate houses, establish services, and better operate municipalities.
{"title":"An AI-based framework for studying visual diversity of urban neighborhoods and its relationship with socio-demographic variables.","authors":"Md Amiruzzaman, Ye Zhao, Stefanie Amiruzzaman, Aryn C Karpinski, Tsung Heng Wu","doi":"10.1007/s42001-022-00197-1","DOIUrl":"https://doi.org/10.1007/s42001-022-00197-1","url":null,"abstract":"<p><p>This study presents a framework to study quantitatively geographical visual diversities of urban neighborhood from a large collection of street-view images using an Artificial Intelligence (AI)-based image segmentation technique. A variety of diversity indices are computed from the extracted visual semantics. They are utilized to discover the relationships between urban visual appearance and socio-demographic variables. This study also validates the reliability of the method with human evaluators. The methodology and results obtained from this study can potentially be used to study urban features, locate houses, establish services, and better operate municipalities.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"6 1","pages":"315-337"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}