V. Chuzhykov, I. Miroshnychenko, Oleksandr Lukianenko
{"title":"Forecasting the fish and seafood catch in the global economy","authors":"V. Chuzhykov, I. Miroshnychenko, Oleksandr Lukianenko","doi":"10.33111/nfmte.2020.175","DOIUrl":"https://doi.org/10.33111/nfmte.2020.175","url":null,"abstract":"","PeriodicalId":300314,"journal":{"name":"Neuro-Fuzzy Modeling Techniques in Economics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125076607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial neural-like network as a basis for forming logical conclusions in systems of exceptional complexity","authors":"V. Hraniak, V. Mazur, Viktor Matvijchuk","doi":"10.33111/nfmte.2020.065","DOIUrl":"https://doi.org/10.33111/nfmte.2020.065","url":null,"abstract":"","PeriodicalId":300314,"journal":{"name":"Neuro-Fuzzy Modeling Techniques in Economics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128809558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fraud detection in car insurance: the problem of unbalanced sampling","authors":"K. Kononova, Anna Havrylenko","doi":"10.33111/nfmte.2020.138","DOIUrl":"https://doi.org/10.33111/nfmte.2020.138","url":null,"abstract":"","PeriodicalId":300314,"journal":{"name":"Neuro-Fuzzy Modeling Techniques in Economics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116536453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The choice between economic efficiency and social equity has become a key objection in economic development, since in the current economic system, which has become close to the Pareto optimum, the achievement of both of these goals is mutually exclusive. Further balancing between these goals is possible only with a fundamental change of current system of economic relations and getting access to new curves of production capabilities, which may become quite real within development of Industry 4.0 and 6th technological wave. Nevertheless, nobody can predict the social impact of Industry 4.0 on society, which in the context of future technological changes transforms into Society 4.0. The purpose of this paper is to conduct a cluster analysis of countries inequality due to IT development. We researched impact of gross capital formation, research and development expenditure to create innovations, intellectual property and high-technology exports on inequality of countries using principal component analysis based on open data for 2012 – 2015. 2 main clusters of 45 countries were identified which have convergence and divergence attributes due to IT development. It was also revealed the countries with inequalities in ensuring economic efficiency and social equity due to other reasons which are not connected with IT development.
{"title":"Influence of the fourth industrial revolution on divergence and convergence of economic inequality for various countries","authors":"Vitaliy Kobets, Valeria Yatsenko","doi":"10.33111/nfmte.2019.124","DOIUrl":"https://doi.org/10.33111/nfmte.2019.124","url":null,"abstract":"The choice between economic efficiency and social equity has become a key objection in economic development, since in the current economic system, which has become close to the Pareto optimum, the achievement of both of these goals is mutually exclusive. Further balancing between these goals is possible only with a fundamental change of current system of economic relations and getting access to new curves of production capabilities, which may become quite real within development of Industry 4.0 and 6th technological wave. Nevertheless, nobody can predict the social impact of Industry 4.0 on society, which in the context of future technological changes transforms into Society 4.0. The purpose of this paper is to conduct a cluster analysis of countries inequality due to IT development. We researched impact of gross capital formation, research and development expenditure to create innovations, intellectual property and high-technology exports on inequality of countries using principal component analysis based on open data for 2012 – 2015. 2 main clusters of 45 countries were identified which have convergence and divergence attributes due to IT development. It was also revealed the countries with inequalities in ensuring economic efficiency and social equity due to other reasons which are not connected with IT development.","PeriodicalId":300314,"journal":{"name":"Neuro-Fuzzy Modeling Techniques in Economics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133461927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A geomarketing approach in the placement problem: a comparative analysis of three clusterization","authors":"K. Kononova, Denis Kostrinchuk","doi":"10.33111/nfmte.2019.030","DOIUrl":"https://doi.org/10.33111/nfmte.2019.030","url":null,"abstract":"","PeriodicalId":300314,"journal":{"name":"Neuro-Fuzzy Modeling Techniques in Economics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125106084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
У статті досліджуються особливості процесів поширення кризових явищ через фінансові та торгівельні канали. Наведено основні передумови, що мають бути враховані при моделюванні їх розповсюдження. Зокрема, для опису часової структури цих процесів автором вводиться термін «латентний період» та обґрунтовується алгоритм визначення його часових меж. Проведено кількісне оцінювання ефективності запропонованої концепції. Спираючись на отримані результати здійснено відбір макроекономічних індикаторів, що характеризують стан основних каналів поширення кризових явищ і відображають деформаційні процеси в економіці за деякий час до завершення латентного періоду. В результаті проведеного аналізу та експериментального тестування сформовано систему вхідних класифікаційних характеристик, необхідних для побудови економіко-математичної моделі прогнозування наслідків поширення фінансової кризи: обсяг офіційних золотовалютних резервів без урахування золота; співвідношення грошового агрегату М2 до обсягу золотовалютних резервів; грошовий мультиплікатор; зміна грошового агрегату М0; зміна грошового агрегату М2; спред ставки відсотка по кредитах в іноземній валюті всередині країни до аналогічного показника за кордоном; коефіцієнт монетизації економіки; зростання експорту; зростання імпорту; частка експорту у ВВП. Отримана нейронна мережа-класифікатор на базі самоорганізаційної карти Кохонена розподіляє простір вихідних точок (кожна з котрих має просторову розмірність у десять координат та характеризується часовою глибиною у тривалість латентного періоду для досліджуваної країни) на кластери, в яких динаміка таких індикаторів як ВВП, реальний обмінний курс до СПЗ, обсяг золотовалютних резервів, гарантований державний борг та вартість облігацій зовнішньої державної позики є подібною. Це дозволило сформувати базу сценаріїв можливої поведінки економік під впливом процесів поширення кризових явищ на основі макропоказників, що характеризують стан фінансового та торгівельного каналів поширення.
{"title":"Modeling of cross-border spreading of financial crisis","authors":"Inna Strelchenko","doi":"10.33111/nfmte.2019.147","DOIUrl":"https://doi.org/10.33111/nfmte.2019.147","url":null,"abstract":"У статті досліджуються особливості процесів поширення кризових явищ через фінансові та торгівельні канали. Наведено основні передумови, що мають бути враховані при моделюванні їх розповсюдження. Зокрема, для опису часової структури цих процесів автором вводиться термін «латентний період» та обґрунтовується алгоритм визначення його часових меж. Проведено кількісне оцінювання ефективності запропонованої концепції. Спираючись на отримані результати здійснено відбір макроекономічних індикаторів, що характеризують стан основних каналів поширення кризових явищ і відображають деформаційні процеси в економіці за деякий час до завершення латентного періоду. В результаті проведеного аналізу та експериментального тестування сформовано систему вхідних класифікаційних характеристик, необхідних для побудови економіко-математичної моделі прогнозування наслідків поширення фінансової кризи: обсяг офіційних золотовалютних резервів без урахування золота; співвідношення грошового агрегату М2 до обсягу золотовалютних резервів; грошовий мультиплікатор; зміна грошового агрегату М0; зміна грошового агрегату М2; спред ставки відсотка по кредитах в іноземній валюті всередині країни до аналогічного показника за кордоном; коефіцієнт монетизації економіки; зростання експорту; зростання імпорту; частка експорту у ВВП. Отримана нейронна мережа-класифікатор на базі самоорганізаційної карти Кохонена розподіляє простір вихідних точок (кожна з котрих має просторову розмірність у десять координат та характеризується часовою глибиною у тривалість латентного періоду для досліджуваної країни) на кластери, в яких динаміка таких індикаторів як ВВП, реальний обмінний курс до СПЗ, обсяг золотовалютних резервів, гарантований державний борг та вартість облігацій зовнішньої державної позики є подібною. Це дозволило сформувати базу сценаріїв можливої поведінки економік під впливом процесів поширення кризових явищ на основі макропоказників, що характеризують стан фінансового та торгівельного каналів поширення.","PeriodicalId":300314,"journal":{"name":"Neuro-Fuzzy Modeling Techniques in Economics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116735998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studying the methods of data transformation in the context of increasing the effectiveness of credit scoring models","authors":"Yuriy Kleban","doi":"10.33111/nfmte.2019.094","DOIUrl":"https://doi.org/10.33111/nfmte.2019.094","url":null,"abstract":"","PeriodicalId":300314,"journal":{"name":"Neuro-Fuzzy Modeling Techniques in Economics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121760023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}