The “Dimitrios Vikelas” athletic center in Ermoupolis of Syros, Greece, consists of two buildings. Building B has a steel superstructure that was constructed approximately 35 years ago. It was initially used as a boat shelter and no design calculations were made. It contains steel columns with varying cross section heights. The spans are bridged via trusses and I-beams. Significant geometrical inconsistencies are noted among the existing steel connections and failures have been recorded as a result of buckling in several beams and bracings during the service life of the athletic center. The current study presents an investigation performed in order to diagnose building structural problems and propose strengthening and intervention measures. The goal of this study was to improve the load-carrying capacity of the structure in order to comply with the current design codes. Moreover, enhancement of the dynamic properties of the strengthened structure was demonstrated using modal analyses. The structural behavior was determined in a more precise manner via non-linear wind time-history and incremental static analyses. The analytical results explain the development of failures in the existing structure.
{"title":"Wind-Induced Failure Analysis and Retrofit of an Existing Steel Structure","authors":"Chrysanthos Maraveas, Z. Fasoulakis","doi":"10.4236/OJCE.2018.83021","DOIUrl":"https://doi.org/10.4236/OJCE.2018.83021","url":null,"abstract":"The “Dimitrios Vikelas” athletic center in Ermoupolis of Syros, Greece, consists of two buildings. Building B has a steel superstructure that was constructed approximately 35 years ago. It was initially used as a boat shelter and no design calculations were made. It contains steel columns with varying cross section heights. The spans are bridged via trusses and I-beams. Significant geometrical inconsistencies are noted among the existing steel connections and failures have been recorded as a result of buckling in several beams and bracings during the service life of the athletic center. The current study presents an investigation performed in order to diagnose building structural problems and propose strengthening and intervention measures. The goal of this study was to improve the load-carrying capacity of the structure in order to comply with the current design codes. Moreover, enhancement of the dynamic properties of the strengthened structure was demonstrated using modal analyses. The structural behavior was determined in a more precise manner via non-linear wind time-history and incremental static analyses. The analytical results explain the development of failures in the existing structure.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127493037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This publication is a revised version of the previous article. Seismic rigidity method despite its widespread use is the object of harsh criticism from scientists who oppose it to the methodology and results of seismological registration of earthquakes and microseisms. The article substantiates the original approach based on the solution of the direct problem of seismic microzonation for the model of real soil thickness. A new formula of the seismic rigidity method is proposed, taking into account the lithological, hydrogeological and spectral features of the soil mass, as well as the position of the new seismic scale of the SSI. The formula was tested on the example of the correct description of the features of macroseismic effects on the territory of Leninakan at the Spitak earthquake in 1988. Linear estimates according to the formula of seismic rigidity in the seismic microzoning area represent changes in seismic intensity in the most contrast way. It is shown that the real estimates of seismic intensity under strong seismic effects (by I > VII degree) will not exceed those given by the formula of the seismic rigidity method.
{"title":"The New Formula of Seismic Rigidity Method","authors":"A. S. Aleshin","doi":"10.4236/OJCE.2018.83025","DOIUrl":"https://doi.org/10.4236/OJCE.2018.83025","url":null,"abstract":"This publication is a revised version of the previous article. Seismic rigidity method despite its widespread use is the object of harsh criticism from scientists who oppose it to the methodology and results of seismological registration of earthquakes and microseisms. The article substantiates the original approach based on the solution of the direct problem of seismic microzonation for the model of real soil thickness. A new formula of the seismic rigidity method is proposed, taking into account the lithological, hydrogeological and spectral features of the soil mass, as well as the position of the new seismic scale of the SSI. The formula was tested on the example of the correct description of the features of macroseismic effects on the territory of Leninakan at the Spitak earthquake in 1988. Linear estimates according to the formula of seismic rigidity in the seismic microzoning area represent changes in seismic intensity in the most contrast way. It is shown that the real estimates of seismic intensity under strong seismic effects (by I > VII degree) will not exceed those given by the formula of the seismic rigidity method.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128062404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prices increase of building materials is a common trend in both developed and developing countries. The prices increase of building materials results in high cost of housing.The aim of this study is to identify the major determinants of prices increase of building materials on Ghanaian construction market, and also to assess the relationship between the independent variables of the prices increase. A five-point Likert scale was used for the study; from strongly disagree (1) to strongly agree (5). The variables in the questionnaire were ranked based on the response of the participants of the study using Mean Response Analysis (MRA) statistics. Spearman correlation matrix was used to determine the relationship between the variables of prices increase of building materials. Crude oil prices, energy cost, local taxes and charges, cost of fuel and power supply, high running cost, high prices of raw materials, cost of transportation and the high cost of labour were found to be the major determinants of prices increase of building materials on Ghanaian construction market. The study further found multicollinearity relationship among variables of prices increase of building materials, of which the highest correlation coefficient was found between fast-growing demand due to high global economic growth and over-dependence on imported building materials. The study recommends that further research should be carried out to determine the control measures of increase prices of building materials in Ghana.
{"title":"Major Determinants of Prices Increase of Building Materials on Ghanaian Construction Market","authors":"H. Danso, N. K. Obeng-Ahenkora","doi":"10.4236/OJCE.2018.82012","DOIUrl":"https://doi.org/10.4236/OJCE.2018.82012","url":null,"abstract":"Prices increase of building materials is a common trend in both developed and developing countries. The prices increase of building materials results in high cost of housing.The aim of this study is to identify the major determinants of prices increase of building materials on Ghanaian construction market, and also to assess the relationship between the independent variables of the prices increase. A five-point Likert scale was used for the study; from strongly disagree (1) to strongly agree (5). The variables in the questionnaire were ranked based on the response of the participants of the study using Mean Response Analysis (MRA) statistics. Spearman correlation matrix was used to determine the relationship between the variables of prices increase of building materials. Crude oil prices, energy cost, local taxes and charges, cost of fuel and power supply, high running cost, high prices of raw materials, cost of transportation and the high cost of labour were found to be the major determinants of prices increase of building materials on Ghanaian construction market. The study further found multicollinearity relationship among variables of prices increase of building materials, of which the highest correlation coefficient was found between fast-growing demand due to high global economic growth and over-dependence on imported building materials. The study recommends that further research should be carried out to determine the control measures of increase prices of building materials in Ghana.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"128 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128471520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Self-Compacting concrete is a concrete that is able to flow and consolidate under its own weight, completely fill the formwork even in the presence of dense reinforcement, whilst maintaining homogeneity and without the need for any additional compaction. Self-Compacting concrete is achieved by using high proportions of powder content and super plasticizers. Due to this, pronounced thermal cracking is anticipated. Thermal cracking in concrete structures is of great concern. The objective of this research is to carry out experiments and investigate fresh and hardened properties of SCC developed using a blend of ordinary Portland cement and ground granulated blast furnace slag (GGBFS), to evaluate the applicability of Japan Concrete Institute (JCI) model equations and to find out any similarities and differences between Self- Compacting concrete and normal vibrated concrete—Portland blast furnace slag concrete class B. Thermal stress analysis of the proposed Self-Compacting concrete and normal vibrated concretes were investigated by simulation using 3D FEM analysis. To carry out these objectives, concrete properties such as autogenous shrinkage, adiabatic temperature rise, drying shrinkage, modulus of elasticity, splitting tensile strength and compressive strength were determined through experiments. From experimental results, it was observed that except for the fresh properties, the hardened properties of Self-Compacting exhibit similar characteristics to those of normal vibrated concrete at almost similar water to binder ratios. It was also established that Self-Compacting concrete at W/B of 32% with a 50% replacement of ground granulated blast furnace slag has better thermal cracking resistance than SCC with 30% GGBFS replacement. It is also found that provided the relevant constants are derived from experimental data, JCI model equations can be applied successfully to evaluate hardened properties of Self-Compacting concrete.
{"title":"Properties and Thermal Stress Analysis of Blended Cement Self-Compacting Concrete","authors":"Benson Kipkemboi, S. Miyazawa","doi":"10.4236/ojce.2018.82009","DOIUrl":"https://doi.org/10.4236/ojce.2018.82009","url":null,"abstract":"Self-Compacting concrete is a concrete that is able to flow and consolidate under its own weight, completely fill the formwork even in the presence of dense reinforcement, whilst maintaining homogeneity and without the need for any additional compaction. Self-Compacting concrete is achieved by using high proportions of powder content and super plasticizers. Due to this, pronounced thermal cracking is anticipated. Thermal cracking in concrete structures is of great concern. The objective of this research is to carry out experiments and investigate fresh and hardened properties of SCC developed using a blend of ordinary Portland cement and ground granulated blast furnace slag (GGBFS), to evaluate the applicability of Japan Concrete Institute (JCI) model equations and to find out any similarities and differences between Self- Compacting concrete and normal vibrated concrete—Portland blast furnace slag concrete class B. Thermal stress analysis of the proposed Self-Compacting concrete and normal vibrated concretes were investigated by simulation using 3D FEM analysis. To carry out these objectives, concrete properties such as autogenous shrinkage, adiabatic temperature rise, drying shrinkage, modulus of elasticity, splitting tensile strength and compressive strength were determined through experiments. From experimental results, it was observed that except for the fresh properties, the hardened properties of Self-Compacting exhibit similar characteristics to those of normal vibrated concrete at almost similar water to binder ratios. It was also established that Self-Compacting concrete at W/B of 32% with a 50% replacement of ground granulated blast furnace slag has better thermal cracking resistance than SCC with 30% GGBFS replacement. It is also found that provided the relevant constants are derived from experimental data, JCI model equations can be applied successfully to evaluate hardened properties of Self-Compacting concrete.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128902136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The work presented here is a study on the measurement and prediction of the rutting resistance of previously rutted asphalt mixes rehabilitated with a layer of micro-surfacing manufactured with virgin and recycled aggregates at different stages of aging. The experimental procedure consisted of rutting tests on hot mix asphalt slabs already degraded and repaired with virgin and recycled micro-surfacing. Then, the evolution of the behavior of micro-surfacing cast on the hot mix asphalt slabs is observed according to loading cycles of the pavement rutting tester MLPC. Before rutting tests, slabs are subjected to 24 hours at 50°C and aged for 2 days and 5 days at 85°C in the oven. The results showed rutting percentages of 6.3% for hot mix asphalt slabs aged for 2 days and 7.2% for 5 days. These hot mix slabs repaired with virgin micro-surfacing have rutting percentage of about 9.2 % for 2 days of aging and 6.5% for 5 days of aging. While, the HMA slabs repaired with recycled micro-surfacing have rutting percentage of about 8.1% for 2 days of aging and 5.9% for 5 days of aging. These results allowed the development of a prediction model based essentially on three predictor variables including cycle number, rutting state and percentage of water in the micro-surfacing material. The developed model shows a strong correlation between the predicted rutting values and the rutting values measured with the MLPC rut tester. Thermal aging in oven has a positive impact on the resistance to permanent deformation of new asphalt mixes and those rehabilitated with micro-surfacing. The parameters of rutting state and contribution water are significant in the rutting prediction model, while the cycle number remains a non-significant parameter in the model but determinant.
{"title":"Rutting Resistance of HMA Rehabilitated with Micro-Surfacing","authors":"Arbia Garfa, A. Carter, A. Dony","doi":"10.4236/OJCE.2018.82019","DOIUrl":"https://doi.org/10.4236/OJCE.2018.82019","url":null,"abstract":"The work presented here is a study on the measurement and prediction of the rutting resistance of previously rutted asphalt mixes rehabilitated with a layer of micro-surfacing manufactured with virgin and recycled aggregates at different stages of aging. The experimental procedure consisted of rutting tests on hot mix asphalt slabs already degraded and repaired with virgin and recycled micro-surfacing. Then, the evolution of the behavior of micro-surfacing cast on the hot mix asphalt slabs is observed according to loading cycles of the pavement rutting tester MLPC. Before rutting tests, slabs are subjected to 24 hours at 50°C and aged for 2 days and 5 days at 85°C in the oven. The results showed rutting percentages of 6.3% for hot mix asphalt slabs aged for 2 days and 7.2% for 5 days. These hot mix slabs repaired with virgin micro-surfacing have rutting percentage of about 9.2 % for 2 days of aging and 6.5% for 5 days of aging. While, the HMA slabs repaired with recycled micro-surfacing have rutting percentage of about 8.1% for 2 days of aging and 5.9% for 5 days of aging. These results allowed the development of a prediction model based essentially on three predictor variables including cycle number, rutting state and percentage of water in the micro-surfacing material. The developed model shows a strong correlation between the predicted rutting values and the rutting values measured with the MLPC rut tester. Thermal aging in oven has a positive impact on the resistance to permanent deformation of new asphalt mixes and those rehabilitated with micro-surfacing. The parameters of rutting state and contribution water are significant in the rutting prediction model, while the cycle number remains a non-significant parameter in the model but determinant.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117077246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The stability of earthworks (cuttings, embankments, dikes) and natural slopes is a problem that is of concern to geotechnicians, both practitioners and researchers. The disorders generated by breaking the slopes are usually spectacular, often destructive and sometimes murderers. Many methods of calculating stability have been proposed. These are differentiated by the assumptions accepted by their authors (methods of calculation in equilibrium limit, methods of calculation at break, deformation calculation methods) and the ease of their implementation (calculations using charts, automatic calculations using software), but they all agree to define an overall factor of safety according to which the stability of the studied slope is considered to be insured or compromised, or by safety factor spartial effects on the one hand, applied stresses and, on the other hand, the mechanical properties soil. Various embankment strengthening techniques have been developed. They are differentiated by the process of their realization, their cost and their durability. The main objective of this study is to present the problems of both natural and artificial slope stability on construction projects. In this regard, special emphasis is given to the sensitivity of the calculation model input parameters (soil, load), which should contribute to raising awareness about this issue, as a prerequisite to make the right decisions and optimal technical solutions in this area.
{"title":"Analysis of Road Embankment Slope Stability","authors":"Chunyuan Liu, Ulysse Sèho F. Hounsa","doi":"10.4236/ojce.2018.82010","DOIUrl":"https://doi.org/10.4236/ojce.2018.82010","url":null,"abstract":"The stability of earthworks (cuttings, embankments, dikes) and natural slopes is a problem that is of concern to geotechnicians, both practitioners and researchers. The disorders generated by breaking the slopes are usually spectacular, often destructive and sometimes murderers. Many methods of calculating stability have been proposed. These are differentiated by the assumptions accepted by their authors (methods of calculation in equilibrium limit, methods of calculation at break, deformation calculation methods) and the ease of their implementation (calculations using charts, automatic calculations using software), but they all agree to define an overall factor of safety according to which the stability of the studied slope is considered to be insured or compromised, or by safety factor spartial effects on the one hand, applied stresses and, on the other hand, the mechanical properties soil. Various embankment strengthening techniques have been developed. They are differentiated by the process of their realization, their cost and their durability. The main objective of this study is to present the problems of both natural and artificial slope stability on construction projects. In this regard, special emphasis is given to the sensitivity of the calculation model input parameters (soil, load), which should contribute to raising awareness about this issue, as a prerequisite to make the right decisions and optimal technical solutions in this area.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130744083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work aims to look for a simplifying surface that can represent the effect of the dual wheels on the variation of the stress and deformation state prevailing during the passage of traffic loads. This was facilitated by the results of Thiam (2016) [4] obtained on the distribution of the vertical contact stress in the space described by the dual wheels. The analysis of the results of this study, on all the loading circles considered, shows that the radius loading circle equal to 0.181 m makes it possible to most probably represent the effect of the dual wheels. With this new surface, the effect of the dual wheels can be determined in 2D. The choice of this load is confirmed by a study in case of overload. Thus, the single axle with dual wheels is represented by a simplified diagram equipped on each side by a disk of radius 0.181 m. These results are obtained using a numerical simulation under Cast3M with a gravelly lateritic pavement.
{"title":"Determination of an Equivalent Loading Circle Which May Represent the Loading of the Dual Wheels","authors":"B. Thiam, Fatou Samb, A. Dione","doi":"10.4236/OJCE.2018.82018","DOIUrl":"https://doi.org/10.4236/OJCE.2018.82018","url":null,"abstract":"This work aims to look for a simplifying surface that can represent the effect of the dual wheels on the variation of the stress and deformation state prevailing during the passage of traffic loads. This was facilitated by the results of Thiam (2016) [4] obtained on the distribution of the vertical contact stress in the space described by the dual wheels. The analysis of the results of this study, on all the loading circles considered, shows that the radius loading circle equal to 0.181 m makes it possible to most probably represent the effect of the dual wheels. With this new surface, the effect of the dual wheels can be determined in 2D. The choice of this load is confirmed by a study in case of overload. Thus, the single axle with dual wheels is represented by a simplified diagram equipped on each side by a disk of radius 0.181 m. These results are obtained using a numerical simulation under Cast3M with a gravelly lateritic pavement.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127578132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Afghan government has planned the project of Kabul New City (KNC) to cope with the rapid growth of Kabul, an existing capital city. Due to climatic and topographical reasons, it is supposed that KNC suffers from a water scarcity problem. This study investigates the feasibility of a rooftop rainwater harvesting system in KNC to relieve the water scarcity problem. An applicability of the rooftop rainwater harvesting system was discussed for several types of residential houses and schools, using 11 years rainfall data. This study also examined the cost-effectiveness of the system by considering the service life of the system. Furthermore, an optimal size of the rainwater storage tank was discussed based on the balance among harvested rainwater volume, non-potable water demand, and cost-effectiveness.
{"title":"Analysis of Rooftop Rainwater Harvesting in Kabul New City: A Case Study for Family Houses and Educational Facilities","authors":"O. Rahimi, K. Murakami","doi":"10.4236/OJCE.2018.82013","DOIUrl":"https://doi.org/10.4236/OJCE.2018.82013","url":null,"abstract":"The Afghan government has planned the project of Kabul New City (KNC) to cope with the rapid growth of Kabul, an existing capital city. Due to climatic and topographical reasons, it is supposed that KNC suffers from a water scarcity problem. This study investigates the feasibility of a rooftop rainwater harvesting system in KNC to relieve the water scarcity problem. An applicability of the rooftop rainwater harvesting system was discussed for several types of residential houses and schools, using 11 years rainfall data. This study also examined the cost-effectiveness of the system by considering the service life of the system. Furthermore, an optimal size of the rainwater storage tank was discussed based on the balance among harvested rainwater volume, non-potable water demand, and cost-effectiveness.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121380993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urban agenda nowadays puts pedestrians as the axis of urban design, and pedestrians are the most important thing in the city. The architect takes that idea and applies it in the project, and he focuses on prioritizing the pedestrian over the cars. Public spaces filled with green zones are a main element, water treatment is a design determinant, buildings use natural illumination as much as possible and culture and arts are reinforced through new scenarios.
{"title":"The Pedagogic Capacity of Architecture the Macro Project University Citadel—University of Atlántico Barranquilla—Colombia","authors":"C. Lemus, Mayra Alejandra Rivero Bueno","doi":"10.4236/OJCE.2018.82011","DOIUrl":"https://doi.org/10.4236/OJCE.2018.82011","url":null,"abstract":"Urban agenda nowadays puts pedestrians as the axis of urban design, and pedestrians are the most important thing in the city. The architect takes that idea and applies it in the project, and he focuses on prioritizing the pedestrian over the cars. Public spaces filled with green zones are a main element, water treatment is a design determinant, buildings use natural illumination as much as possible and culture and arts are reinforced through new scenarios.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116864599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kossi Bolanigni Amey, Komi Mawutodzi Sounsah, K. Amoussou, K. Neglo
The present study aims at helping to search for preventive solutions to pathologies of constructions in Togblecope in Togo, by the reduction in the withdrawal and swelling of foundation grounds through their stabilization. Togblecope’s clay taken from 1 m, 2 m and 3 m deep, and mixed with four binding materials (cement, sea sand, silty sand and lime). Tests of identification and free swelling with odometer are carried out on pure and stabilized materials. What emerges from these tests is that the limits of liquidity and plasticity are rising along with the rate of stabilizers while the index of plasticity is falling. Cement and lime cause a reduction in the index value of plasticity by almost 50%. The more the sand’s grain size, the more the reduction in the plasticity index. The swelling potential is reduced by 60% for cement and lime, 30% for sea sand and 20% for silty sand. The present study is a contribution to the reduction in deflations from 20% to 60% of some parts of constructions in order to limit cracks.
{"title":"The Reduction in the Swelling Potential of the Foundation Ground of Togblécopé in Togo by the Stabilization with Binders and Sands","authors":"Kossi Bolanigni Amey, Komi Mawutodzi Sounsah, K. Amoussou, K. Neglo","doi":"10.4236/ojce.2018.82017","DOIUrl":"https://doi.org/10.4236/ojce.2018.82017","url":null,"abstract":"The present study aims at helping to search for preventive solutions to pathologies of constructions in Togblecope in Togo, by the reduction in the withdrawal and swelling of foundation grounds through their stabilization. Togblecope’s clay taken from 1 m, 2 m and 3 m deep, and mixed with four binding materials (cement, sea sand, silty sand and lime). Tests of identification and free swelling with odometer are carried out on pure and stabilized materials. What emerges from these tests is that the limits of liquidity and plasticity are rising along with the rate of stabilizers while the index of plasticity is falling. Cement and lime cause a reduction in the index value of plasticity by almost 50%. The more the sand’s grain size, the more the reduction in the plasticity index. The swelling potential is reduced by 60% for cement and lime, 30% for sea sand and 20% for silty sand. The present study is a contribution to the reduction in deflations from 20% to 60% of some parts of constructions in order to limit cracks.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"46 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125557135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}