Pub Date : 2024-11-21eCollection Date: 2024-01-01DOI: 10.1155/crig/1397713
Charbel Saad, Christine Aoun, Charbel Iskandar, Tony Hayek, Maroun Matar, Andre Megarbane
Geroderma Osteodysplastica (GO) is a rare autosomal recessive connective tissue disease characterized by wrinkled skin and osteoporosis, two distinct aging-related features. A loss of function mutation in GORAB results in the disease. Immediately after birth, a cyanotic female neonate was found to have transposition of great vessels (TGV) that was corrected with an uneventful surgical recovery. The patient was noted to have wrinkled skin and hyperlaxity in her joints. After a complete nutritional and metabolic panel, in addition to karyotyping, imaging, skin histopathology analysis, and genetic testing she was found to have GO. We found two novel compound heterozygous mutations in GORAB: p.Asp236∗ and pAsp236Ala. This is the first study that reports the concurrent incidence of GO with TGV. The patient was started on bisphosphonates, which led to a reduction in the occurrence of fractures. An early diagnosis of GO is warranted to prevent or reduce bone density loss due to osteoporosis via initiation of bisphosphonate treatment. Whole exome sequencing remains the gold standard for diagnosing GO and ruling out phenotypically similar disorders.
{"title":"Geroderma Osteodysplastica With Concomitant Transposition of Great Vessels: A Case Report and Literature Review.","authors":"Charbel Saad, Christine Aoun, Charbel Iskandar, Tony Hayek, Maroun Matar, Andre Megarbane","doi":"10.1155/crig/1397713","DOIUrl":"https://doi.org/10.1155/crig/1397713","url":null,"abstract":"<p><p>Geroderma Osteodysplastica (GO) is a rare autosomal recessive connective tissue disease characterized by wrinkled skin and osteoporosis, two distinct aging-related features. A loss of function mutation in <i>GORAB</i> results in the disease. Immediately after birth, a cyanotic female neonate was found to have transposition of great vessels (TGV) that was corrected with an uneventful surgical recovery. The patient was noted to have wrinkled skin and hyperlaxity in her joints. After a complete nutritional and metabolic panel, in addition to karyotyping, imaging, skin histopathology analysis, and genetic testing she was found to have GO. We found two novel compound heterozygous mutations in <i>GORAB</i>: p.Asp236∗ and pAsp236Ala. This is the first study that reports the concurrent incidence of GO with TGV. The patient was started on bisphosphonates, which led to a reduction in the occurrence of fractures. An early diagnosis of GO is warranted to prevent or reduce bone density loss due to osteoporosis via initiation of bisphosphonate treatment. Whole exome sequencing remains the gold standard for diagnosing GO and ruling out phenotypically similar disorders.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"1397713"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intellectual disability (ID) is seen in around 2.5% of global population and can vary from mild to severe and profound ID. There can be multiple affected family members if it is inherited, though many autosomal dominant ID cases would be due to de novo mutations are very less likely to recur in families. A confirmatory diagnosis is facilitated by genetic testing like chromosomal microarray and next generation sequencing. We describe here our cohort of 15 patients: children and adolescents with ID diagnosed by using sequencing technologies and parental segregation studies. Most of the variants identified were de novo variants and consistent with sporadic occurrence, and blended phenotypes were identified. Appropriate genetic counseling was performed and options for prenatal diagnosis were discussed. Thus, advanced sequencing technologies enable identification of likely causative de novo variants associated with intellectual disability and dysmorphism.
智力障碍(ID)约占全球人口的 2.5%,可由轻度到重度和极重度不等。如果是遗传性的,可能会有多个受影响的家庭成员,但许多常染色体显性遗传的 ID 病例都是由于基因突变所致,在家族中复发的可能性很小。染色体微阵列和新一代测序等基因检测有助于确诊。我们在此描述了我们的 15 例患者:通过测序技术和父母分离研究确诊的儿童和青少年 ID 患者。所发现的变异大多为新变异,与散发性变异一致,并发现了混合表型。他们进行了适当的遗传咨询,并讨论了产前诊断的方案。因此,先进的测序技术能够鉴定出与智力障碍和畸形有关的可能致病的新变异。
{"title":"Intellectual Disability and Blended Phenotypes: Insights from a Centre in North India.","authors":"Inusha Panigrahi, Sudha Rao, Shalu Verma Kumar, Divya Kumari, Parminder Kaur","doi":"10.1155/2024/6009569","DOIUrl":"10.1155/2024/6009569","url":null,"abstract":"<p><p>Intellectual disability (ID) is seen in around 2.5% of global population and can vary from mild to severe and profound ID. There can be multiple affected family members if it is inherited, though many autosomal dominant ID cases would be due to de novo mutations are very less likely to recur in families. A confirmatory diagnosis is facilitated by genetic testing like chromosomal microarray and next generation sequencing. We describe here our cohort of 15 patients: children and adolescents with ID diagnosed by using sequencing technologies and parental segregation studies. Most of the variants identified were de novo variants and consistent with sporadic occurrence, and blended phenotypes were identified. Appropriate genetic counseling was performed and options for prenatal diagnosis were discussed. Thus, advanced sequencing technologies enable identification of likely causative de novo variants associated with intellectual disability and dysmorphism.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"6009569"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nonsyndromic hereditary thoracic aortic aneurysm and dissection (TAAD) is an autosomal dominant disease; however, it is frequently difficult to identify the causative genes. We report in this study a 33-year-old Japanese male with TAAD (Stanford type A) that is complicated with severe aortic regurgitation. There was no family history of aortic diseases in the patient nor any specific clinical features suggestive of connective tissue diseases, such as Marfan syndrome. Genetic testing identified candidate causative variants in two different genes: MYLK (c.4819G > A, p.[Gly1607Ser]) and FBN1 (c.365G > A, p.[Arg122His]). Familial cosegregation analysis revealed that the novel de novo MYLK variant was present only in the proband, and the FBN1 variant was also found in his nonaffected mother, and thus the MYLK variant was classified as likely pathogenic. MYLK is a causative gene for nonsyndromic TAAD that requires careful management; however, the number of reports is limited. Accumulating data on the pathogenicity of rare variants by performing a comprehensive pedigree analysis would help establish better treatment strategies for life-threatening hereditary TAAD cases.
{"title":"A <i>De Novo</i> Missense <i>MYLK</i> Variant Leading to Nonsyndromic Thoracic Aortic Aneurysm and Dissection Identified by Segregation Analysis.","authors":"Daigo Nishijo, Hiroki Yagi, Nana Akiyama, Norifumi Takeda, Masahiko Ando, Haruo Yamauchi, Norihiko Takeda, Issei Komuro","doi":"10.1155/2024/4281972","DOIUrl":"10.1155/2024/4281972","url":null,"abstract":"<p><p>Nonsyndromic hereditary thoracic aortic aneurysm and dissection (TAAD) is an autosomal dominant disease; however, it is frequently difficult to identify the causative genes. We report in this study a 33-year-old Japanese male with TAAD (Stanford type A) that is complicated with severe aortic regurgitation. There was no family history of aortic diseases in the patient nor any specific clinical features suggestive of connective tissue diseases, such as Marfan syndrome. Genetic testing identified candidate causative variants in two different genes: <i>MYLK</i> (c.4819G > A, p.[Gly1607Ser]) and <i>FBN1</i> (c.365G > A, p.[Arg122His]). Familial cosegregation analysis revealed that the novel de novo <i>MYLK</i> variant was present only in the proband, and the <i>FBN1</i> variant was also found in his nonaffected mother, and thus the <i>MYLK</i> variant was classified as likely pathogenic. <i>MYLK</i> is a causative gene for nonsyndromic TAAD that requires careful management; however, the number of reports is limited. Accumulating data on the pathogenicity of rare variants by performing a comprehensive pedigree analysis would help establish better treatment strategies for life-threatening hereditary TAAD cases.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"4281972"},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Primary ciliary dyskinesia (PCD) is a hereditary disease caused by genes related to motile cilia. We report two male pediatric cases of PCD caused by hemizygous pathogenic variants in the OFD1 centriole and centriolar satellite protein (OFD1) gene. The variants were NM_003611.3: c.[2789_2793delTAAAA] (p.[Ile930LysfsTer8]) in Case 1 and c.[2632_2635delGAAG] (p.[Glu878LysfsTer9]) in Case 2. Both cases had characteristic recurrent respiratory infections. Neither case had symptoms of oral-facial-digital syndrome type I. We identified a variant (c.2632_2635delGAAG) that has not been previously reported in any case of OFD1-PCD.
{"title":"Two Pediatric Cases of Primary Ciliary Dyskinesia Caused by Loss-of-Function Variants in Oral-Facial-Digital Syndrome Gene, <i>OFD1</i>.","authors":"Yifei Xu, Yuki Tsurinaga, Tsubasa Matsumoto, Ryuji Muta, Taichi Yano, Hiroshi Sakaida, Sawako Masuda, Koki Ueda, Guofei Feng, Shimpei Gotoh, Satoru Ogawa, Makoto Ikejiri, Kaname Nakatani, Mizuho Nagao, Masaki Tanabe, Kazuhiko Takeuchi","doi":"10.1155/2024/1595717","DOIUrl":"10.1155/2024/1595717","url":null,"abstract":"<p><p>Primary ciliary dyskinesia (PCD) is a hereditary disease caused by genes related to motile cilia. We report two male pediatric cases of PCD caused by hemizygous pathogenic variants in the OFD1 centriole and centriolar satellite protein (<i>OFD1</i>) gene. The variants were NM_003611.3: c.[2789_2793delTAAAA] (p.[Ile930LysfsTer8]) in Case 1 and c.[2632_2635delGAAG] (p.[Glu878LysfsTer9]) in Case 2. Both cases had characteristic recurrent respiratory infections. Neither case had symptoms of oral-facial-digital syndrome type I. We identified a variant (c.2632_2635delGAAG) that has not been previously reported in any case of <i>OFD1</i>-PCD.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"1595717"},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30eCollection Date: 2024-01-01DOI: 10.1155/2024/2926555
Fiona Whitaker, Alvaro Serrano
Dual-specificity tyrosine kinase 1A (DYRK1A) is a member of the CMGC family that is linked to a multitude of neuronal development pathways. Both overexpression and insufficiency of this gene are associated with many recognizable disorders, including Down syndrome and DYRK1A-related intellectual disability syndrome which is characterized by distinct physical features with microcephaly and global developmental delay. We report a case of DYRK1A-related intellectual disability syndrome caused by a novel mutation.
{"title":"Discovery of a Novel DYRK1A Mutation (c.524del) in Intellectual Development Disorder Autosomal Dominant 7 (MRD7): A Comprehensive Case Analysis.","authors":"Fiona Whitaker, Alvaro Serrano","doi":"10.1155/2024/2926555","DOIUrl":"10.1155/2024/2926555","url":null,"abstract":"<p><p>Dual-specificity tyrosine kinase 1A (DYRK1A) is a member of the CMGC family that is linked to a multitude of neuronal development pathways. Both overexpression and insufficiency of this gene are associated with many recognizable disorders, including Down syndrome and DYRK1A-related intellectual disability syndrome which is characterized by distinct physical features with microcephaly and global developmental delay. We report a case of DYRK1A-related intellectual disability syndrome caused by a novel mutation.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"2926555"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17eCollection Date: 2024-01-01DOI: 10.1155/2024/9936936
Madeline Snipes, Stephanie Stokes, Amy Vidalin, Lee D Moore, Natalia Schlabritz-Lutsevich, James Maher
Discordance between the genetic sex and phenotype seen on ultrasound can identify disorders of sexual development (DSD) that previously escaped detection until puberty. We describe a 46, XY disorder of sexual differentiation caused by a rare mutation in the SF1 gene (OMIM]184757, (NR5A1). The mutation (NR5A1)-c.205C > G (p. Arg69Gly) was discovered after a phenotype-genotype discrepancy was encountered during prenatal care. The baby with 46, XY DSD has female external genitalia but evidence of Y chromosome-related regression of Müllerian structures and the absence of palpable gonads. We discussed the literature on phenotype-genotype discrepancy and the importance of care coordination between the antenatal and postnatal teams to ensure a timely diagnosis of DSD.
遗传性别与超声波所见表型之间的不一致性可以发现性发育障碍(DSD),而这种障碍以前在青春期之前是无法发现的。我们描述了一种由 SF1 基因(OMIM]184757,NR5A1)罕见突变引起的 46 XY 性分化障碍。突变(NR5A1)-c.205C > G (p. Arg69Gly)是在产前检查中发现表型与基因型不一致后发现的。46 XY DSD 患儿的外生殖器为女性,但有证据表明与 Y 染色体有关的穆勒氏管结构退化,而且没有可触及的性腺。我们讨论了有关表型-基因型差异的文献,以及产前和产后团队协调护理以确保及时诊断 DSD 的重要性。
{"title":"Phenotype-Genotype Discordance and a Case of a Disorder of Sexual Differentiation.","authors":"Madeline Snipes, Stephanie Stokes, Amy Vidalin, Lee D Moore, Natalia Schlabritz-Lutsevich, James Maher","doi":"10.1155/2024/9936936","DOIUrl":"https://doi.org/10.1155/2024/9936936","url":null,"abstract":"<p><p>Discordance between the genetic sex and phenotype seen on ultrasound can identify disorders of sexual development (DSD) that previously escaped detection until puberty. We describe a 46, XY disorder of sexual differentiation caused by a rare mutation in the <i>SF1</i> gene (OMIM]184757, (<i>NR5A1</i>). The mutation (<i>NR5A1</i>)-c.205C > G (p. Arg69Gly) was discovered after a phenotype-genotype discrepancy was encountered during prenatal care. The baby with 46, XY DSD has female external genitalia but evidence of Y chromosome-related regression of Müllerian structures and the absence of palpable gonads. We discussed the literature on phenotype-genotype discrepancy and the importance of care coordination between the antenatal and postnatal teams to ensure a timely diagnosis of DSD.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"9936936"},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-30eCollection Date: 2024-01-01DOI: 10.1155/2024/8099373
Surasak Puvabanditsin, Ian Lee, Natasha Cordero, Keisha Target, Su Young Park, Rajeev Mehta
3-hydroxy isobutyl-CoA hydrolase (HIBCH) deficiency is a recently described, rare inborn error of valine metabolism associated with a Leigh syndrome-like phenotype, neurodegenerative symptoms, and caused by recessive mutations in the HIBCH gene. We report the most severe case to date of an intrauterine growth-restricted term male who presented with severe acidosis and a high anion gap soon after birth. The manifestation was fatal that led to death within 36 hours of life. The diagnosis was made postnatally by Whole Genome Sequencing (WGS). We report a rapid and fatal event of HIBCN in a neonate and review of the literature.
{"title":"A Fatal Case of 3-Hydroxyisobutyryl-CoA Hydrolase Deficiency in a Term Infant with Severe High Anion Gap Acidosis and Review of the Literature.","authors":"Surasak Puvabanditsin, Ian Lee, Natasha Cordero, Keisha Target, Su Young Park, Rajeev Mehta","doi":"10.1155/2024/8099373","DOIUrl":"10.1155/2024/8099373","url":null,"abstract":"<p><p>3-hydroxy isobutyl-CoA hydrolase (HIBCH) deficiency is a recently described, rare inborn error of valine metabolism associated with a Leigh syndrome-like phenotype, neurodegenerative symptoms, and caused by recessive mutations in the HIBCH gene. We report the most severe case to date of an intrauterine growth-restricted term male who presented with severe acidosis and a high anion gap soon after birth. The manifestation was fatal that led to death within 36 hours of life. The diagnosis was made postnatally by Whole Genome Sequencing (WGS). We report a rapid and fatal event of HIBCN in a neonate and review of the literature.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"8099373"},"PeriodicalIF":0.0,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiple primary cancers (MPCs) are defined as the presence of more than one cancer in an individual that is not due to recurrence, metastasis, or local spread. Different factors such as copathogenic genetic mutations, environmental factors, lifestyle, and first cancer treatment increase the possible occurrence of subsequent malignancies. In recent years, the risk of MPCs has increased due to improved treatment; however, quadruple primary malignancies are still rare and require further investigation and treatment of the underlying cause. Here, we present a 64-year-old man with a 40-year history of cigarette smoking who developed quadruple primary malignancies of the epiglottis, kidney, pancreas, and lung. To investigate the possible genetic cause, we performed WES, and a variant of c.580G > A (Ala194Thr) was discovered in exon 5 of the Krebs cycle enzyme gene, fumarate hydratase (FH). This substitution was classified as VUS in Clinvar and likely pathogenic by Varsome and Franklin software. The structural analysis showed that the variation found was localized in a highly conserved alpha helix in the D2 domain near the FH hinge region (<6 Å), suggesting that enzyme activity was affected by a perturbation in protein quaternary structure. Because of the well-established role of FH mutations in renal cancer risk, it was possible that the FH mutation could have led to the development of renal cell carcinoma in this case. The biological mechanisms of MPCs suggest that subsequent primary malignancies are triggered by the combined effects of environmental factors, such as smoking and genetics.
{"title":"Quadruple Primary Malignancies over 2 Years with Germline Mutation in Krebs Cycle Enzyme Gene Fumarate Hydratase.","authors":"Solaleh Aminian, Fawaz Al-Alloosh, Fatemeh Yadegari, Shiva Zarinfam, Haider Hamza Al-Abedi, Keivan Majidzadeh-A","doi":"10.1155/2024/5591237","DOIUrl":"10.1155/2024/5591237","url":null,"abstract":"<p><p>Multiple primary cancers (MPCs) are defined as the presence of more than one cancer in an individual that is not due to recurrence, metastasis, or local spread. Different factors such as copathogenic genetic mutations, environmental factors, lifestyle, and first cancer treatment increase the possible occurrence of subsequent malignancies. In recent years, the risk of MPCs has increased due to improved treatment; however, quadruple primary malignancies are still rare and require further investigation and treatment of the underlying cause. Here, we present a 64-year-old man with a 40-year history of cigarette smoking who developed quadruple primary malignancies of the epiglottis, kidney, pancreas, and lung. To investigate the possible genetic cause, we performed WES, and a variant of c.580G > A (Ala194Thr) was discovered in exon 5 of the Krebs cycle enzyme gene, fumarate hydratase (FH). This substitution was classified as VUS in Clinvar and likely pathogenic by Varsome and Franklin software. The structural analysis showed that the variation found was localized in a highly conserved alpha helix in the D2 domain near the FH hinge region (<6 Å), suggesting that enzyme activity was affected by a perturbation in protein quaternary structure. Because of the well-established role of FH mutations in renal cancer risk, it was possible that the FH mutation could have led to the development of renal cell carcinoma in this case. The biological mechanisms of MPCs suggest that subsequent primary malignancies are triggered by the combined effects of environmental factors, such as smoking and genetics.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"5591237"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaoyan G. Tang-Siegel, David W. Maughan, Milah B. Frownfelter, Alan R. Light
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein–Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.
肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)是一种病因和病理生理学尚不清楚的多系统致残性疾病,其典型症状包括长时间的疲劳衰弱恢复或劳累后不适(PEM)。三磷酸腺苷(ATP)是促进细胞活动的细胞内能量,其产生障碍是导致疲劳的原因之一。在此,我们介绍一例长期的 ME/CFS 病例:一位 75 岁的白种女性患者,她的 ME/CFS 症状明显是由 24 年前的 Epstein-Barr 病毒急性感染(单核细胞增多症)引发的。在此之前,患者是一名健康的职业女性。最近的 DNA 序列分析发现了线粒体呼吸链酶的错义变体,包括 ATP6(ChrMT:8981A > G;Q152R)和 Cox1(ChrMT:6268C > T;A122V)。蛋白亚基 ATP6 和 Cox1 由线粒体 DNA 在核外编码:Cox1 基因编码复合体 IV 的亚基 1(CIV:细胞色素 c 氧化酶),ATP6 基因编码复合体 V 的亚基 A(CV:ATP 合酶)。CIV 和 CV 是进行线粒体电子传递呼吸链反应以产生 ATP 的五种基本酶中的最后两种。使用透射电子显微镜对血液样本进行的进一步分析表明,循环中的细胞外线粒体异常。这些结果表明,患者的线粒体功能失调,这可能直接导致了她的主要症状,包括 PEM 以及神经和认知能力的改变。此外,已确定的 ATP6(ChrMT:8981A > G;Q152R)和 Cox1(ChrMT:6268C > T;A122V)变体在线粒体 ATP 生成的后期发挥作用,可能在患者线粒体异常和 ME/CFS 症状的发展中起了作用。
{"title":"Mitochondrial DNA Missense Mutations ChrMT: 8981A > G and ChrMT: 6268C > T Identified in a Caucasian Female with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Triggered by the Epstein–Barr Virus","authors":"Gaoyan G. Tang-Siegel, David W. Maughan, Milah B. Frownfelter, Alan R. Light","doi":"10.1155/2024/6475425","DOIUrl":"https://doi.org/10.1155/2024/6475425","url":null,"abstract":"Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein–Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140997805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09eCollection Date: 2024-01-01DOI: 10.1155/2024/6475425
Gaoyan G Tang-Siegel, David W Maughan, Milah B Frownfelter, Alan R Light
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein-Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.
肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)是一种病因和病理生理学尚不清楚的多系统致残性疾病,其典型症状包括长时间的疲劳衰弱恢复或劳累后不适(PEM)。三磷酸腺苷(ATP)是促进细胞活动的细胞内能量,其产生障碍是导致疲劳的原因之一。在此,我们介绍一例长期的 ME/CFS 病例:一位 75 岁的白种女性患者,她的 ME/CFS 症状明显是由 24 年前的 Epstein-Barr 病毒急性感染(单核细胞增多症)引发的。在此之前,患者是一名健康的职业女性。最近的 DNA 序列分析发现了线粒体呼吸链酶的错义变体,包括 ATP6(ChrMT:8981A > G;Q152R)和 Cox1(ChrMT:6268C > T;A122V)。蛋白亚基 ATP6 和 Cox1 由线粒体 DNA 在核外编码:Cox1 基因编码复合体 IV 的亚基 1(CIV:细胞色素 c 氧化酶),ATP6 基因编码复合体 V 的亚基 A(CV:ATP 合酶)。CIV 和 CV 是进行线粒体电子传递呼吸链反应以产生 ATP 的五种基本酶中的最后两种。使用透射电子显微镜对血液样本进行的进一步分析表明,循环中的细胞外线粒体异常。这些结果表明,患者的线粒体功能失调,这可能直接导致了她的主要症状,包括 PEM 以及神经和认知能力的改变。此外,已确定的 ATP6(ChrMT:8981A > G;Q152R)和 Cox1(ChrMT:6268C > T;A122V)变体在线粒体 ATP 生成的后期发挥作用,可能在患者线粒体异常和 ME/CFS 症状的发展中起了作用。
{"title":"Mitochondrial DNA Missense Mutations ChrMT: 8981A > G and ChrMT: 6268C > T Identified in a Caucasian Female with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Triggered by the Epstein-Barr Virus.","authors":"Gaoyan G Tang-Siegel, David W Maughan, Milah B Frownfelter, Alan R Light","doi":"10.1155/2024/6475425","DOIUrl":"https://doi.org/10.1155/2024/6475425","url":null,"abstract":"<p><p>Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue. Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein-Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman. A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including <i>ATP6</i> (ChrMT: 8981A > G; Q152R) and <i>Cox1</i> (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the <i>Cox1</i> gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the <i>ATP6</i> gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP. Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient's mitochondria and the development of her ME/CFS symptoms.</p>","PeriodicalId":30325,"journal":{"name":"Case Reports in Genetics","volume":"2024 ","pages":"6475425"},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}