首页 > 最新文献

Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation最新文献

英文 中文
Integrating Hyperspectral and LiDAR Data in the Study of Vegetation 整合高光谱和激光雷达数据在植被研究中的应用
Pub Date : 2018-12-07 DOI: 10.1201/9781315164151-13
Jessica J. Mitchell, N. Glenn, K. Dahlin, N. Ilangakoon, H. Dashti, Megan C. Maloney
{"title":"Integrating Hyperspectral and LiDAR Data in the Study of Vegetation","authors":"Jessica J. Mitchell, N. Glenn, K. Dahlin, N. Ilangakoon, H. Dashti, Megan C. Maloney","doi":"10.1201/9781315164151-13","DOIUrl":"https://doi.org/10.1201/9781315164151-13","url":null,"abstract":"","PeriodicalId":304529,"journal":{"name":"Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116462090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Monitoring Vegetation Diversity and Health through Spectral Traits and Trait Variations Based on Hyperspectral Remote Sensing 基于光谱特征的植被多样性与健康监测及其高光谱遥感特征变化
A. Lausch, P. Leitão
{"title":"Monitoring Vegetation Diversity and Health through Spectral Traits and Trait Variations Based on Hyperspectral Remote Sensing","authors":"A. Lausch, P. Leitão","doi":"10.1201/9781315164151-4","DOIUrl":"https://doi.org/10.1201/9781315164151-4","url":null,"abstract":"","PeriodicalId":304529,"journal":{"name":"Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation","volume":"33 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123617688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Linking Online Spectral Libraries with Hyperspectral Test Data through Library Building Tools and Code 通过库构建工具和代码链接在线光谱库与高光谱测试数据
M. A. Hoque, S. Phinn
{"title":"Linking Online Spectral Libraries with Hyperspectral Test Data through Library Building Tools and Code","authors":"M. A. Hoque, S. Phinn","doi":"10.1201/9781315164151-6","DOIUrl":"https://doi.org/10.1201/9781315164151-6","url":null,"abstract":"","PeriodicalId":304529,"journal":{"name":"Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation","volume":"571 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127791481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Hyperspectral Remote Sensing of Vegetation and Agricultural Crops 植被与农作物高光谱遥感研究进展
P. Thenkabail, M. Gumma, P. Teluguntla, Irshad A. Mohammed
There are now over 40 years of research in hyperspectral remote sensing (or imaging spectroscopy) of vegetation and agricultural crops (Thenkabail et al., 2011a). Even though much of the early research in hyperspectral remote sensing was overwhelmingly focused on minerals, now there is substantial literature in characterization, monitoring, modeling, and mapping of vegetation and agricultural crops using ground-based, platform-mounted, airborne, Unmanned Aerial Vehicle (UAV) mounted, and spaceborne hyperspectral remote sensing (Swatantran et al., 2011; Atzberger, 2013; Middleton et al., 2013; Schlemmer et al., 2013; Thenkabail et al., 2013; Udelhoven et al., 2013; Zhang et al., 2013). The state-of-the-art in hyperspectral remote sensing of vegetation and agriculture shows significant enhancement over conventional remote sensing, leading to improved and targeted modeling and mapping of specific agricultural characteristics such as: (a) biophysical and biochemical quantities (Galvao, 2011; Clark and Roberts, 2012), (b) crop typespecies (Thenkabail et al., 2013), (c) management and stress factors such as nitrogen deficiency, moisture deficiency, or drought conditions (Delalieux et al., 2009; Gitelson, 2013; Slonecker et al., 2013), and (d) water use and water productivities (Thenkabail et al., 2013). At the same time, overcoming Hughes’ phenomenon or curse of dimensionality of data and data redundancy (Plaza et al., 2009) is of great importance to make rapid advances in a much wider utilization of hyperspectral data. This is because, for a specific application, a large number of hyperspectral bands are redundant (Thenkabail et al., 2013). Selecting the relevant bands will require the use of data mining techniques (Burger and Gowen, 2011) to focus on utilizing the optimal or best ones to maximize the efficiency of data use and reduce unnecessary computing...
目前,对植被和农作物的高光谱遥感(或成像光谱)研究已有40多年的历史(Thenkabail et al., 2011)。尽管高光谱遥感的早期研究绝大多数集中在矿物上,但现在有大量文献利用地面、平台、机载、无人机(UAV)和星载高光谱遥感对植被和农作物进行表征、监测、建模和制图(Swatantran等人,2011;Atzberger, 2013;Middleton et al., 2013;Schlemmer et al., 2013;Thenkabail et al., 2013;Udelhoven et al., 2013;Zhang等人,2013)。植被和农业高光谱遥感的最新技术比传统遥感有了显著提高,从而改进了特定农业特征的有针对性的建模和制图,例如:(a)生物物理和生化数量(Galvao, 2011;Clark和Roberts, 2012), (b)作物类型和品种(Thenkabail等人,2013),(c)管理和胁迫因素,如缺氮、缺水或干旱条件(Delalieux等人,2009;Gitelson, 2013;Slonecker et al., 2013)和(d)水资源利用和水生产力(Thenkabail et al., 2013)。同时,克服Hughes的数据维数和数据冗余现象或诅咒(Plaza et al., 2009)对于快速推进高光谱数据的更广泛利用具有重要意义。这是因为,对于特定的应用,大量的高光谱波段是冗余的(Thenkabail et al., 2013)。选择相关波段将需要使用数据挖掘技术(Burger和Gowen, 2011),专注于利用最优或最好的数据来最大化数据使用效率并减少不必要的计算……
{"title":"Advances in Hyperspectral Remote Sensing of Vegetation and Agricultural Crops","authors":"P. Thenkabail, M. Gumma, P. Teluguntla, Irshad A. Mohammed","doi":"10.1201/9781315164151-1","DOIUrl":"https://doi.org/10.1201/9781315164151-1","url":null,"abstract":"There are now over 40 years of research in hyperspectral remote sensing (or \u0000imaging spectroscopy) of vegetation and agricultural crops (Thenkabail et \u0000al., 2011a). Even though much of the early research in hyperspectral remote \u0000sensing was overwhelmingly focused on minerals, now there is substantial \u0000literature in characterization, monitoring, modeling, and mapping of vegetation \u0000and agricultural crops using ground-based, platform-mounted, airborne, \u0000Unmanned Aerial Vehicle (UAV) mounted, and spaceborne hyperspectral \u0000remote sensing (Swatantran et al., 2011; Atzberger, 2013; Middleton et al., 2013; \u0000Schlemmer et al., 2013; Thenkabail et al., 2013; Udelhoven et al., 2013; Zhang \u0000et al., 2013). The state-of-the-art in hyperspectral remote sensing of vegetation \u0000and agriculture shows significant enhancement over conventional remote \u0000sensing, leading to improved and targeted modeling and mapping of specific \u0000agricultural characteristics such as: (a) biophysical and biochemical quantities \u0000(Galvao, 2011; Clark and Roberts, 2012), (b) crop typespecies (Thenkabail \u0000et al., 2013), (c) management and stress factors such as nitrogen deficiency, \u0000moisture deficiency, or drought conditions (Delalieux et al., 2009; Gitelson, \u00002013; Slonecker et al., 2013), and (d) water use and water productivities \u0000(Thenkabail et al., 2013). At the same time, overcoming Hughes’ phenomenon \u0000or curse of dimensionality of data and data redundancy (Plaza et al., 2009) \u0000is of great importance to make rapid advances in a much wider utilization of \u0000hyperspectral data. This is because, for a specific application, a large number \u0000of hyperspectral bands are redundant (Thenkabail et al., 2013). Selecting the \u0000relevant bands will require the use of data mining techniques (Burger and \u0000Gowen, 2011) to focus on utilizing the optimal or best ones to maximize the \u0000efficiency of data use and reduce unnecessary computing...","PeriodicalId":304529,"journal":{"name":"Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126526585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 110
期刊
Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1