Pub Date : 2019-12-18DOI: 10.5772/intechopen.85773
Baljeet Singh, Surender Kumar, Archana Singh
Transition metal nanoparticles and metal oxide have been used extensively for a wide range of applications in electrochemical reactions (HER, ORR, OER) and energy storage (supercapacitors batteries). To make less expensive, the use of transition metal at minimum metal contents without compromising the catalytic activity could be one way. Most of the catalytic process takes place on the surface and reaction dynamic can be manipulated by changing the particle size and shape. For a long time, single metal atom organometallic compounds have been used as a catalyst at the industrial level. However, problems with the homogeneous catalyst to recover back at the end of the process lead to development of heterogeneous single-atom catalysts with equal activity like a homogeneous catalyst. Cobalt single atom has received a tremendous interest of the scientific community due to its excellent catalytic activity and recyclability. Cobalt single-atom catalyst has shown better performance compared with sub-nanometer nanoparticles catalyst for ORR, OER, and HER. This chapter is conferring method of preparation of carbon-based single Co atoms heterogeneous catalyst, their application for ORR, OER, HER reactions, and mechanistic investigations through DFT calculations. The role of single Co metal atoms and anchoring using N or heteroatoms is discussed and compared.
{"title":"Cobalt Single Atom Heterogeneous Catalyst: Method of Preparation, Characterization, Catalysis, and Mechanism","authors":"Baljeet Singh, Surender Kumar, Archana Singh","doi":"10.5772/intechopen.85773","DOIUrl":"https://doi.org/10.5772/intechopen.85773","url":null,"abstract":"Transition metal nanoparticles and metal oxide have been used extensively for a wide range of applications in electrochemical reactions (HER, ORR, OER) and energy storage (supercapacitors batteries). To make less expensive, the use of transition metal at minimum metal contents without compromising the catalytic activity could be one way. Most of the catalytic process takes place on the surface and reaction dynamic can be manipulated by changing the particle size and shape. For a long time, single metal atom organometallic compounds have been used as a catalyst at the industrial level. However, problems with the homogeneous catalyst to recover back at the end of the process lead to development of heterogeneous single-atom catalysts with equal activity like a homogeneous catalyst. Cobalt single atom has received a tremendous interest of the scientific community due to its excellent catalytic activity and recyclability. Cobalt single-atom catalyst has shown better performance compared with sub-nanometer nanoparticles catalyst for ORR, OER, and HER. This chapter is conferring method of preparation of carbon-based single Co atoms heterogeneous catalyst, their application for ORR, OER, HER reactions, and mechanistic investigations through DFT calculations. The role of single Co metal atoms and anchoring using N or heteroatoms is discussed and compared.","PeriodicalId":304980,"journal":{"name":"Cobalt Compounds and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126446783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-18DOI: 10.5772/intechopen.89404
A. Manzak, Y. Yıldız
{"title":"Introductory Chapter: Cobalt Compounds and Applications","authors":"A. Manzak, Y. Yıldız","doi":"10.5772/intechopen.89404","DOIUrl":"https://doi.org/10.5772/intechopen.89404","url":null,"abstract":"","PeriodicalId":304980,"journal":{"name":"Cobalt Compounds and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123487850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-27DOI: 10.5772/INTECHOPEN.86215
R. Marzouki, M. A. Sayed, M. Graia, M. Zid
Cobalt phosphates with open framework present various physical performances in relation to their structures. In fact, the development of new materials that could potentially be ionic conductors or ion exchangers led us to examine the Co-P-O and A-Co-P-O crystallographic systems (A: monovalent cation) and their different methods of synthesis. This work consists first of all in highlighting the crystalline phases of cobalt phosphates. Indeed, many works related to the discovery of some of these materials with interesting properties, in particular ionic conductivity, motivated our research and encouraged us to collect several cobalt phosphates and to correlate structure-physical properties in particular electrical properties. crystal lattice. In addition, these modelizations are based on the structural data of the crystal. Since the measurements are often performed on ceramics, it is also necessary to take into account the effect of the relative density of the ceramic: effect of the microstructure.
{"title":"Cobalt Phosphates and Applications","authors":"R. Marzouki, M. A. Sayed, M. Graia, M. Zid","doi":"10.5772/INTECHOPEN.86215","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86215","url":null,"abstract":"Cobalt phosphates with open framework present various physical performances in relation to their structures. In fact, the development of new materials that could potentially be ionic conductors or ion exchangers led us to examine the Co-P-O and A-Co-P-O crystallographic systems (A: monovalent cation) and their different methods of synthesis. This work consists first of all in highlighting the crystalline phases of cobalt phosphates. Indeed, many works related to the discovery of some of these materials with interesting properties, in particular ionic conductivity, motivated our research and encouraged us to collect several cobalt phosphates and to correlate structure-physical properties in particular electrical properties. crystal lattice. In addition, these modelizations are based on the structural data of the crystal. Since the measurements are often performed on ceramics, it is also necessary to take into account the effect of the relative density of the ceramic: effect of the microstructure.","PeriodicalId":304980,"journal":{"name":"Cobalt Compounds and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128692996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-26DOI: 10.5772/intechopen.88976
L. E. Gómez, A. Boix
In this work, catalysts based on cobalt supported on ZrO2 and CeO2 and CoCeMnOx were studied for the CO preferential oxidation (COPrOx) in hydrogenrich stream able to feed fuel cells. Among them, the CoCeMnOx formulation showed the highest CO conversion at low temperatures, while the cobalt oxide supported on ceria presented the best selectivity toward CO2. The Co3O4 spinel was the active phase for the CO preferential oxidation detected in all catalysts. However, the CoOx-CeO2 and CoCeMnOx catalysts resulted more active than cobalt oxide supported on zirconia. The presence of ceria close to cobalt species promotes the redox properties and enhances the catalytic activity. In the CoCeMnOx catalyst prepared by coprecipitation, the incorporation of Mn represented an additional positive effect. The presence of Mn promoted the reoxidation of Co2+ to Co3+ and, consequently, the activity increased at low temperature. By X-ray diffraction (XRD) of CoOx-ZrO2 and the CoOx-CeO2 catalysts, the Co3O4 spinel and ZrO2 or CeO2 were identified in agreement with laser-Raman spectra. At the same time, the CoCeMnOx catalyst, prepared by coprecipitation of precursor salts, showed an incipient development of a new phase (Mn,Co)3O4 mixed spinel, due to the intimate contact between elements.
{"title":"Cobalt-Based Catalysts for CO Preferential Oxidation","authors":"L. E. Gómez, A. Boix","doi":"10.5772/intechopen.88976","DOIUrl":"https://doi.org/10.5772/intechopen.88976","url":null,"abstract":"In this work, catalysts based on cobalt supported on ZrO2 and CeO2 and CoCeMnOx were studied for the CO preferential oxidation (COPrOx) in hydrogenrich stream able to feed fuel cells. Among them, the CoCeMnOx formulation showed the highest CO conversion at low temperatures, while the cobalt oxide supported on ceria presented the best selectivity toward CO2. The Co3O4 spinel was the active phase for the CO preferential oxidation detected in all catalysts. However, the CoOx-CeO2 and CoCeMnOx catalysts resulted more active than cobalt oxide supported on zirconia. The presence of ceria close to cobalt species promotes the redox properties and enhances the catalytic activity. In the CoCeMnOx catalyst prepared by coprecipitation, the incorporation of Mn represented an additional positive effect. The presence of Mn promoted the reoxidation of Co2+ to Co3+ and, consequently, the activity increased at low temperature. By X-ray diffraction (XRD) of CoOx-ZrO2 and the CoOx-CeO2 catalysts, the Co3O4 spinel and ZrO2 or CeO2 were identified in agreement with laser-Raman spectra. At the same time, the CoCeMnOx catalyst, prepared by coprecipitation of precursor salts, showed an incipient development of a new phase (Mn,Co)3O4 mixed spinel, due to the intimate contact between elements.","PeriodicalId":304980,"journal":{"name":"Cobalt Compounds and Applications","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133071624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-22DOI: 10.5772/INTECHOPEN.88272
L. Sundar, M. Singh, A. Pereira, A. Sousa
The magnetic nanoparticles (NPs) are offering a wide range of applications in medical and engineering fields. Among all the magnetic nanoparticles, cobalt oxide (Co 3 O 4 ) nanoparticles and its composite-based nanoparticles are attracting more interest from researchers because of its unique mechanical, thermal, and magnetic properties. The aim of this book is to bring together a number of recent contribu-tions regarding the cobalt oxide-based composite nanoparticles from several researchers all over the world. The latest research results, innovations, and meth-odologies are reported in the book in order to support the discussion and to circulate ideas and knowledge about the applications of these materials in medical and engineering applications. This chapter presents the methodology for the synthesis and characterization and applications of cobalt oxide-based composite nanoparticles. The detailed analysis related to toxicity of these nanocomposite materials is also included in this book chapter.
{"title":"The Cobalt Oxide-Based Composite Nanomaterial Synthesis and Its Biomedical and Engineering Applications","authors":"L. Sundar, M. Singh, A. Pereira, A. Sousa","doi":"10.5772/INTECHOPEN.88272","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88272","url":null,"abstract":"The magnetic nanoparticles (NPs) are offering a wide range of applications in medical and engineering fields. Among all the magnetic nanoparticles, cobalt oxide (Co 3 O 4 ) nanoparticles and its composite-based nanoparticles are attracting more interest from researchers because of its unique mechanical, thermal, and magnetic properties. The aim of this book is to bring together a number of recent contribu-tions regarding the cobalt oxide-based composite nanoparticles from several researchers all over the world. The latest research results, innovations, and meth-odologies are reported in the book in order to support the discussion and to circulate ideas and knowledge about the applications of these materials in medical and engineering applications. This chapter presents the methodology for the synthesis and characterization and applications of cobalt oxide-based composite nanoparticles. The detailed analysis related to toxicity of these nanocomposite materials is also included in this book chapter.","PeriodicalId":304980,"journal":{"name":"Cobalt Compounds and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124462649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-16DOI: 10.5772/INTECHOPEN.86260
M. Dragan, S. Enache, M. Varlam, K. Petrov
Lanthanum cobaltite (LaCoO3) perovskite-type oxide is an important conductive ceramic material finding a broad range of technical applications. Physical and chemical properties of the final lanthanum cobalt oxide powder material obtained are strongly dependent on the method of preparation. Taking in account these considerations, we focus our investigation on the solid state reaction process. The characterization of prepared lanthanum cobalt oxide material was studied by using X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermogravimetry-differential scanning calorimetry (TG-DSC), and conduction properties. Following the experimental results, it can be concluded that with proper improvement, the solid state reaction process may also provide an efficient preparation method for perovskite-type LaCoO3 powder. Important to mention is that we looked into the aspects to produce again same which showed consistently reproducibility of batch to batch powder properties. This is a key factor to overcome a successful commercialization of new material synthesis development.
{"title":"Perovskite-Type Lanthanum Cobaltite LaCoO3: Aspects of Processing Route toward Practical Applications","authors":"M. Dragan, S. Enache, M. Varlam, K. Petrov","doi":"10.5772/INTECHOPEN.86260","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86260","url":null,"abstract":"Lanthanum cobaltite (LaCoO3) perovskite-type oxide is an important conductive ceramic material finding a broad range of technical applications. Physical and chemical properties of the final lanthanum cobalt oxide powder material obtained are strongly dependent on the method of preparation. Taking in account these considerations, we focus our investigation on the solid state reaction process. The characterization of prepared lanthanum cobalt oxide material was studied by using X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermogravimetry-differential scanning calorimetry (TG-DSC), and conduction properties. Following the experimental results, it can be concluded that with proper improvement, the solid state reaction process may also provide an efficient preparation method for perovskite-type LaCoO3 powder. Important to mention is that we looked into the aspects to produce again same which showed consistently reproducibility of batch to batch powder properties. This is a key factor to overcome a successful commercialization of new material synthesis development.","PeriodicalId":304980,"journal":{"name":"Cobalt Compounds and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123431870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}