首页 > 最新文献

Proceedings of the 15th International Conference on Artificial Intelligence and Law最新文献

英文 中文
Machine learning for readability of legislative sentences 立法句子可读性的机器学习
Michael Curtotti, Eric C. McCreath, Tom Bruce, Sara S. Frug, W. Weibel, Nicolas Ceynowa
Improving the readability of legislation is an important and unresolved problem. Recently, researchers have begun to apply legal informatics to this problem. This paper applies machine learning to predict the readability of sentences from legislation and regulations. A corpus of sentences from the United States Code and US Code of Federal Regulations was created. Each sentence was labelled for language difficulty using results from a large-scale crowdsourced study undertaken during 2014. The corpus was used as training and test data for machine learning. The corpus includes a version tagged using the Stanford parser context free grammar and a version tagged using the Stanford dependency grammar parser. The corpus is described and made available to interested researchers. We investigated whether extending natural language features available as input to machine learning improves the accuracy of prediction. Among features evaluated are those from the context free and dependency grammars. Letter and word ngrams were also studied. We found the addition of such features improves accuracy of prediction on legal language. We also undertake a correlation study of natural language features and language difficulty drawing insights as to the characteristics that may make legal language more difficult. These insights, and those from machine learning, enable us to describe a system for reducing legal language difficulty and to identify a number of suggested heuristics for improving the writing of legislation and regulations.
提高立法的可读性是一个重要而未解决的问题。近年来,研究人员开始将法律信息学应用于这一问题。本文应用机器学习来预测法律法规句子的可读性。创建了美国法典和美国联邦法规法典的句子语料库。根据2014年进行的一项大规模众包研究的结果,每个句子都被标记为语言困难。语料库被用作机器学习的训练和测试数据。语料库包括一个使用斯坦福解析器上下文无关语法标记的版本和一个使用斯坦福依赖语法解析器标记的版本。语料库被描述并提供给感兴趣的研究人员。我们研究了扩展自然语言特征作为机器学习的输入是否可以提高预测的准确性。评估的特性包括来自上下文无关和依赖语法的特性。还研究了字母和单词的图形。我们发现这些特征的加入提高了法律语言预测的准确性。我们还进行了自然语言特征和语言难度的相关性研究,以了解可能使法律语言更加困难的特征。这些见解,以及那些来自机器学习的见解,使我们能够描述一个减少法律语言困难的系统,并确定一些建议的启发式方法,以改善立法和法规的写作。
{"title":"Machine learning for readability of legislative sentences","authors":"Michael Curtotti, Eric C. McCreath, Tom Bruce, Sara S. Frug, W. Weibel, Nicolas Ceynowa","doi":"10.1145/2746090.2746095","DOIUrl":"https://doi.org/10.1145/2746090.2746095","url":null,"abstract":"Improving the readability of legislation is an important and unresolved problem. Recently, researchers have begun to apply legal informatics to this problem. This paper applies machine learning to predict the readability of sentences from legislation and regulations. A corpus of sentences from the United States Code and US Code of Federal Regulations was created. Each sentence was labelled for language difficulty using results from a large-scale crowdsourced study undertaken during 2014. The corpus was used as training and test data for machine learning. The corpus includes a version tagged using the Stanford parser context free grammar and a version tagged using the Stanford dependency grammar parser. The corpus is described and made available to interested researchers. We investigated whether extending natural language features available as input to machine learning improves the accuracy of prediction. Among features evaluated are those from the context free and dependency grammars. Letter and word ngrams were also studied. We found the addition of such features improves accuracy of prediction on legal language. We also undertake a correlation study of natural language features and language difficulty drawing insights as to the characteristics that may make legal language more difficult. These insights, and those from machine learning, enable us to describe a system for reducing legal language difficulty and to identify a number of suggested heuristics for improving the writing of legislation and regulations.","PeriodicalId":309125,"journal":{"name":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132962500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
The case law of the Italian constitutional court, its power laws, and the web of scholarly opinions 意大利宪法法院的判例法、权力法和学术意见网
T. Agnoloni, U. Pagallo
The paper examines the citation network of the via incidentale rulings of the Italian Constitutional Court ("ICC"), vis-à-vis the web of scholarly opinions, comments, and annotations, devoted to such cases. The aim is to deepen the notion of legal relevance. On the one hand, a remarkable number of cases that are considerably discussed by experts, are neither hubs nor authorities in the ICC citation network. On the other hand, cases that are relevant in the ICC citation network are scarcely debated, or even ignored, by scholars. This twofold outcome suggests that we should combine research on the citation network of the courts with the web of scholarly opinions, to obtain a more detailed picture of which decisions and verdicts have to be reckoned as relevant in a given legal system.
本文考察了意大利宪法法院(“ICC”)的偶然裁决的引文网络,参见-à-vis学术意见,评论和注释的网络,专门用于此类案件。其目的是加深法律相关性的概念。一方面,专家们讨论过的大量案例既不是国际商会引文网络的中心,也不是权威机构。另一方面,与国际商会引文网络相关的案例很少被学者讨论,甚至被忽视。这一双重结果表明,我们应该将对法院引用网络的研究与学术意见网络结合起来,以获得更详细的图景,即哪些决定和判决必须被视为与特定法律体系相关。
{"title":"The case law of the Italian constitutional court, its power laws, and the web of scholarly opinions","authors":"T. Agnoloni, U. Pagallo","doi":"10.1145/2746090.2746108","DOIUrl":"https://doi.org/10.1145/2746090.2746108","url":null,"abstract":"The paper examines the citation network of the via incidentale rulings of the Italian Constitutional Court (\"ICC\"), vis-à-vis the web of scholarly opinions, comments, and annotations, devoted to such cases. The aim is to deepen the notion of legal relevance. On the one hand, a remarkable number of cases that are considerably discussed by experts, are neither hubs nor authorities in the ICC citation network. On the other hand, cases that are relevant in the ICC citation network are scarcely debated, or even ignored, by scholars. This twofold outcome suggests that we should combine research on the citation network of the courts with the web of scholarly opinions, to obtain a more detailed picture of which decisions and verdicts have to be reckoned as relevant in a given legal system.","PeriodicalId":309125,"journal":{"name":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131901020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Thou shalt is not you will 你要做的不是你要做的
Guido Governatori
In this paper we discuss some reasons why temporal logic might not be suitable to model real life norms. To show this, we present a novel deontic logic contrary-to-duty/derived permission paradox based on the interaction of obligations, permissions and contrary-to-duty obligations. The paradox is inspired by real life norms.
在本文中,我们讨论了时间逻辑可能不适合模拟现实生活规范的一些原因。为了证明这一点,我们提出了一种基于义务、许可和反义务义务相互作用的新型道义逻辑反义务/派生许可悖论。这个悖论的灵感来自于现实生活的规范。
{"title":"Thou shalt is not you will","authors":"Guido Governatori","doi":"10.1145/2746090.2746105","DOIUrl":"https://doi.org/10.1145/2746090.2746105","url":null,"abstract":"In this paper we discuss some reasons why temporal logic might not be suitable to model real life norms. To show this, we present a novel deontic logic contrary-to-duty/derived permission paradox based on the interaction of obligations, permissions and contrary-to-duty obligations. The paradox is inspired by real life norms.","PeriodicalId":309125,"journal":{"name":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127576353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 51
期刊
Proceedings of the 15th International Conference on Artificial Intelligence and Law
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1