首页 > 最新文献

Comput. Environ. Urban Syst.最新文献

英文 中文
Birds of a feather: Interpolating distribution patterns of urban birds 物以类聚:插值城市鸟类的分布模式
Pub Date : 1900-01-01 DOI: 10.1016/j.compenvurbsys.2007.02.001
J. Walker, R. Balling, J. Briggs, M. Katti, P. Warren, E. Wentz
{"title":"Birds of a feather: Interpolating distribution patterns of urban birds","authors":"J. Walker, R. Balling, J. Briggs, M. Katti, P. Warren, E. Wentz","doi":"10.1016/j.compenvurbsys.2007.02.001","DOIUrl":"https://doi.org/10.1016/j.compenvurbsys.2007.02.001","url":null,"abstract":"","PeriodicalId":309282,"journal":{"name":"Comput. Environ. Urban Syst.","volume":"688 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"119271031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
A novel model to predict a slab avalanche configuration using m: n-CAk cellular automata 利用m: n-CAk元胞自动机预测板状雪崩形态的新模型
Pub Date : 1900-01-01 DOI: 10.1016/j.compenvurbsys.2010.07.002
Pau Fonseca i Casas, Màxim Colls, J. Casanovas
{"title":"A novel model to predict a slab avalanche configuration using m: n-CAk cellular automata","authors":"Pau Fonseca i Casas, Màxim Colls, J. Casanovas","doi":"10.1016/j.compenvurbsys.2010.07.002","DOIUrl":"https://doi.org/10.1016/j.compenvurbsys.2010.07.002","url":null,"abstract":"","PeriodicalId":309282,"journal":{"name":"Comput. Environ. Urban Syst.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117757712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A data-driven agent-based simulation to predict crime patterns in an urban environment 一种数据驱动的基于主体的模拟,用于预测城市环境中的犯罪模式
Pub Date : 1900-01-01 DOI: 10.3929/ETHZ-B-000431739
Raquel Rosés, Cristina Kadar, N. Malleson
Spatial crime simulations contribute to our understanding of the mechanisms that drive crime and can support decision-makers in developing effective crime reduction strategies. Agent-based models that integrate geographical environments to generate crime patterns have emerged in recent years, although data-driven crime simulations are scarce. This article (1) identifies numerous important drivers of crime patterns, (2) collects relevant, openly available data sources to build a GIS-layer with static and dynamic geographical, as well as temporal features relevant to crime, (3) builds a virtual urban environment with these layers, in which individual offender agents navigate, (4) proposes a data-driven decision-making process using machine-learning for the agents to decide whether to engage in criminal activity based on their perception of the environment and, finally, (5) generates fine-grained crime patterns in a simulated urban environment. The novelty of this work lies in the various large-scale data layers, the integration of machine learning at individual agent level to process the data layers, and the high resolution of the resulting predictions. The results show that the spatial, temporal, and interaction layers are all required to predict the top street segments with the highest number of crimes. In addition, the spatial layer is the most informative, which means that spatial data contributes most to predictive performance. Thus, these findings highlight the importance of the inclusion of various open data sources and the potential of theory-informed, data-driven simulations for the purpose of crime prediction. The resulting model is applicable as a predictive tool and as a test platform to support crime reduction.
空间犯罪模拟有助于我们理解驱动犯罪的机制,并可以支持决策者制定有效的减少犯罪战略。近年来,尽管数据驱动的犯罪模拟很少,但整合地理环境以生成犯罪模式的基于主体的模型已经出现。本文(1)确定了犯罪模式的许多重要驱动因素;(2)收集了相关的、公开可用的数据源,构建了一个具有与犯罪相关的静态和动态地理以及时间特征的gis层;(3)用这些层构建了一个虚拟的城市环境,在这个环境中,单个罪犯代理人可以导航;(4)提出了一种数据驱动的决策过程,利用机器学习让智能体根据对环境的感知来决定是否从事犯罪活动,最后(5)在模拟的城市环境中生成细粒度的犯罪模式。这项工作的新颖之处在于各种大规模数据层,在个体代理级别集成机器学习来处理数据层,以及由此产生的预测的高分辨率。结果表明,预测犯罪数量最高的街道段需要空间层、时间层和相互作用层。此外,空间层的信息量最大,这意味着空间数据对预测性能的贡献最大。因此,这些发现强调了纳入各种开放数据源的重要性,以及基于理论的、数据驱动的模拟的潜力,以实现犯罪预测。由此产生的模型可作为支持减少犯罪的预测工具和测试平台。
{"title":"A data-driven agent-based simulation to predict crime patterns in an urban environment","authors":"Raquel Rosés, Cristina Kadar, N. Malleson","doi":"10.3929/ETHZ-B-000431739","DOIUrl":"https://doi.org/10.3929/ETHZ-B-000431739","url":null,"abstract":"Spatial crime simulations contribute to our understanding of the mechanisms that drive crime and can support decision-makers in developing effective crime reduction strategies. Agent-based models that integrate geographical environments to generate crime patterns have emerged in recent years, although data-driven crime simulations are scarce. This article (1) identifies numerous important drivers of crime patterns, (2) collects relevant, openly available data sources to build a GIS-layer with static and dynamic geographical, as well as temporal features relevant to crime, (3) builds a virtual urban environment with these layers, in which individual offender agents navigate, (4) proposes a data-driven decision-making process using machine-learning for the agents to decide whether to engage in criminal activity based on their perception of the environment and, finally, (5) generates fine-grained crime patterns in a simulated urban environment. The novelty of this work lies in the various large-scale data layers, the integration of machine learning at individual agent level to process the data layers, and the high resolution of the resulting predictions. The results show that the spatial, temporal, and interaction layers are all required to predict the top street segments with the highest number of crimes. In addition, the spatial layer is the most informative, which means that spatial data contributes most to predictive performance. Thus, these findings highlight the importance of the inclusion of various open data sources and the potential of theory-informed, data-driven simulations for the purpose of crime prediction. The resulting model is applicable as a predictive tool and as a test platform to support crime reduction.","PeriodicalId":309282,"journal":{"name":"Comput. Environ. Urban Syst.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131180482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Object-based delineation of urban tree canopy: assessing change in Oklahoma City, 2006-2013 基于目标的城市树冠圈定:评估俄克拉荷马城2006-2013年的变化
Pub Date : 1900-01-01 DOI: 10.1016/j.compenvurbsys.2018.08.006
Emily A. Ellis, Adam J. Mathews
{"title":"Object-based delineation of urban tree canopy: assessing change in Oklahoma City, 2006-2013","authors":"Emily A. Ellis, Adam J. Mathews","doi":"10.1016/j.compenvurbsys.2018.08.006","DOIUrl":"https://doi.org/10.1016/j.compenvurbsys.2018.08.006","url":null,"abstract":"","PeriodicalId":309282,"journal":{"name":"Comput. Environ. Urban Syst.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117766903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
期刊
Comput. Environ. Urban Syst.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1