Pub Date : 2022-09-28DOI: 10.22363/1815-5235-2022-18-3-228-241
N. Gureeva, R. Kiseleva, A. Kiselev, A. Nikolaev, Yu. V. Klochkov
The usage of traditional approximating functions directly to the desired displacement vector of the internal point of a finite element to determine it through nodal unknowns in the form of displacement vectors and their derivatives is described. To analyze the stress state of a geometrically non-linearly deformable shell of rotation at the loading step, the developed algorithm for forming the stiffness matrix of a hexagonal finite element with nodal values in the form of displacement increments and their derivatives was used. To obtain the desired approximating expressions, the traditional interpolation theory is used, which, when calculated in a curved coordinate system, is applied to the displacement vector of the internal point of a finite element for its approximation of class C(1) through nodal displacement vectors and their derivatives. For the coordinate transformation, expressions of the bases of nodal points are obtained in terms of the basis vectors of the inner point of the finite element. After the coordinate transformations, approximating expressions of class C(1) are found for the components of the displacement vector of the internal point of the finite element, leading in a curved coordinate system to implicitly account for the displacement of the finite element as a rigid whole. Using calculation examples, the results of the developed method of approximation of the required values of the FEM with significant displacements of the structure as an absolute solid are obtained.
{"title":"Volumetric element with vector approximation of the desired values for nonlinear calculation of the shell of rotation","authors":"N. Gureeva, R. Kiseleva, A. Kiselev, A. Nikolaev, Yu. V. Klochkov","doi":"10.22363/1815-5235-2022-18-3-228-241","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-3-228-241","url":null,"abstract":"The usage of traditional approximating functions directly to the desired displacement vector of the internal point of a finite element to determine it through nodal unknowns in the form of displacement vectors and their derivatives is described. To analyze the stress state of a geometrically non-linearly deformable shell of rotation at the loading step, the developed algorithm for forming the stiffness matrix of a hexagonal finite element with nodal values in the form of displacement increments and their derivatives was used. To obtain the desired approximating expressions, the traditional interpolation theory is used, which, when calculated in a curved coordinate system, is applied to the displacement vector of the internal point of a finite element for its approximation of class C(1) through nodal displacement vectors and their derivatives. For the coordinate transformation, expressions of the bases of nodal points are obtained in terms of the basis vectors of the inner point of the finite element. After the coordinate transformations, approximating expressions of class C(1) are found for the components of the displacement vector of the internal point of the finite element, leading in a curved coordinate system to implicitly account for the displacement of the finite element as a rigid whole. Using calculation examples, the results of the developed method of approximation of the required values of the FEM with significant displacements of the structure as an absolute solid are obtained.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44105076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-28DOI: 10.22363/1815-5235-2022-18-3-195-203
V. Kolchunov, V. Moskovtseva
Experimental determination of the parameters of the force resistance of reinforced concrete structures aimed at protecting them from emergency beyond design impacts is an important direction in improving the safety of buildings and structures. In this connection, the purpose of the study was an experimental assessment of the deformation parameters in the complexly stressed elements of reinforced concrete frames under special impact in the form of a sudden column removal. Experimental studies were carried out for two frames, one of which was tested when removing the middle column, the second - when removing the extreme. Experimental two-span structures of reinforced concrete frames are designed with three floors in height, reinforcement was made with spatial reinforcing cages that provide resistance to torsion with bending. The results of experimental and theoretical studies of reinforced concrete frame structures under special influences and an assessment of displacements, cracking and destruction of the considered complex-stressed structural elements under such influences are presented. It is established that the type of stress state, the formation and width of crack opening significantly affect the dissipative properties of the structural system.
{"title":"Survivability of reinforced concrete frames of multi-storey buildings with complex stress elements","authors":"V. Kolchunov, V. Moskovtseva","doi":"10.22363/1815-5235-2022-18-3-195-203","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-3-195-203","url":null,"abstract":"Experimental determination of the parameters of the force resistance of reinforced concrete structures aimed at protecting them from emergency beyond design impacts is an important direction in improving the safety of buildings and structures. In this connection, the purpose of the study was an experimental assessment of the deformation parameters in the complexly stressed elements of reinforced concrete frames under special impact in the form of a sudden column removal. Experimental studies were carried out for two frames, one of which was tested when removing the middle column, the second - when removing the extreme. Experimental two-span structures of reinforced concrete frames are designed with three floors in height, reinforcement was made with spatial reinforcing cages that provide resistance to torsion with bending. The results of experimental and theoretical studies of reinforced concrete frame structures under special influences and an assessment of displacements, cracking and destruction of the considered complex-stressed structural elements under such influences are presented. It is established that the type of stress state, the formation and width of crack opening significantly affect the dissipative properties of the structural system.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49101647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-28DOI: 10.22363/1815-5235-2022-18-3-242-254
K. Nikitin, Oleg A. Kirsanov
The paper presents the results of a comparative study of several finite element models of ribbed reinforced concrete solid floors. Using the example of a solid slab with infrequent ribs arranged along a grid of columns, three models frequently used in computational practice are analyzed. Those models include both rods and thin-walled elements. In the first model, the plate and its ribs are considered separately, within the framework of the decomposition scheme of the structure. The second model contains plate finite elements and the rod finite elements of the ribs connected to each other. The third model consists entirely of thin-walled finite elements that model both the plate and the floor ribs. The ribbed floor is also considered in the formulation of the problem within the framework of the theory of elasticity. The floor is represented in the form of rigidly connected solid bodies of ribs and plates. Reinforcement rods inside the concrete massive are included in the model as separate solid bodies. This model serves as a benchmark for assessing the accuracy of the obtained results. Its calculation is performed in the FEM application Ansys. The paper compares the results of calculations performed using various models. A conclusion is made about the accuracy of the obtained results. A significant difference between the proposed work and similar studies devoted to the selection of the best design schemes of ribbed slab of floor is the consideration of the influence of reinforcement on the behavior of the structure.
{"title":"Comparative study of finite element methods of calculation of ribbed reinforced concrete floors","authors":"K. Nikitin, Oleg A. Kirsanov","doi":"10.22363/1815-5235-2022-18-3-242-254","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-3-242-254","url":null,"abstract":"The paper presents the results of a comparative study of several finite element models of ribbed reinforced concrete solid floors. Using the example of a solid slab with infrequent ribs arranged along a grid of columns, three models frequently used in computational practice are analyzed. Those models include both rods and thin-walled elements. In the first model, the plate and its ribs are considered separately, within the framework of the decomposition scheme of the structure. The second model contains plate finite elements and the rod finite elements of the ribs connected to each other. The third model consists entirely of thin-walled finite elements that model both the plate and the floor ribs. The ribbed floor is also considered in the formulation of the problem within the framework of the theory of elasticity. The floor is represented in the form of rigidly connected solid bodies of ribs and plates. Reinforcement rods inside the concrete massive are included in the model as separate solid bodies. This model serves as a benchmark for assessing the accuracy of the obtained results. Its calculation is performed in the FEM application Ansys. The paper compares the results of calculations performed using various models. A conclusion is made about the accuracy of the obtained results. A significant difference between the proposed work and similar studies devoted to the selection of the best design schemes of ribbed slab of floor is the consideration of the influence of reinforcement on the behavior of the structure.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46429389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-28DOI: 10.22363/1815-5235-2022-18-3-204-214
S. Yakupov, Ruslan I. Gubaidullin
Protective coatings are widely used in all branches of production and life. The necessary qualities of coatings are provided by developing complex thin-layer compositions. The complexity of the structure of the coating also arises during operation as a result of the influence of the environment, physical fields, human factor. Many coatings are initially formed directly on the surfaces of structures with initially complex geometry. At the same time, a number of smart coatings, along with a complex structure, change their physical and mechanical properties when triggered. When choosing a coating, adhesive and technology for its application, questions arise related to determining their necessary geometric and physical parameters, assessing their mechanical properties and service life depending on the environment and physical fields, etc. This requires a reliable research tool. In the review, based on well-known publications and patents for the invention, the following are noted: methods for studying the mechanical properties of decomposable and non-decomposable coatings; methods for determining adhesion - the adhesion strength of the coating to the substrate; methods for studying the delamination of constituent elements and delamination of the coating from the substrate. Attention is focused on effective experimental and theoretical methods for assessing the mechanical properties of the coating and adhesive on flat and non-planar surfaces, as well as on some relevant results.
{"title":"Rigidity, adhesion and delamination of the coating in the “substrate - coating” system","authors":"S. Yakupov, Ruslan I. Gubaidullin","doi":"10.22363/1815-5235-2022-18-3-204-214","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-3-204-214","url":null,"abstract":"Protective coatings are widely used in all branches of production and life. The necessary qualities of coatings are provided by developing complex thin-layer compositions. The complexity of the structure of the coating also arises during operation as a result of the influence of the environment, physical fields, human factor. Many coatings are initially formed directly on the surfaces of structures with initially complex geometry. At the same time, a number of smart coatings, along with a complex structure, change their physical and mechanical properties when triggered. When choosing a coating, adhesive and technology for its application, questions arise related to determining their necessary geometric and physical parameters, assessing their mechanical properties and service life depending on the environment and physical fields, etc. This requires a reliable research tool. In the review, based on well-known publications and patents for the invention, the following are noted: methods for studying the mechanical properties of decomposable and non-decomposable coatings; methods for determining adhesion - the adhesion strength of the coating to the substrate; methods for studying the delamination of constituent elements and delamination of the coating from the substrate. Attention is focused on effective experimental and theoretical methods for assessing the mechanical properties of the coating and adhesive on flat and non-planar surfaces, as well as on some relevant results.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43793230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-28DOI: 10.22363/1815-5235-2022-18-3-269-279
J. H. Agalarov, Guldasta Akif Mammadova, M. A. Rustamova
The movements of a reinforced net are considered. Mesh systems are used in various areas of modern technology, aviation, fishing, and construction. In recent years, much attention has been drawn to the complete equations that describe the motion of a deformable thread. In accordance with the studied task, the reinforcement of the net is carried out by adding terms in the equations of motion. In the planar case, the static behavior of the structure is investigated, and equations of motion are derived that allow the study of motion. The problem of wave propagation in deformable filament systems, taking into account a significant deviation of the filament shape from the original rectilinear one, is mathematically very difficult, since the equations of motion are a system of nonlinear differential equations in partial derivatives. To solve the problem, the method of characteristics is used. As well the method of characteristics solves the problem of the propagation of unloading waves (in the case of a load, shock waves arise). Depending on the velocity distribution at the boundary, the distribution of the strain constant on the characteristics is determined. The results are constructed by numerical integration of the integrals of the characteristics found by the method. The solution using the characteristic equations shows the occurrence of traveling waves.
{"title":"Investigation of waves in the strengthened net","authors":"J. H. Agalarov, Guldasta Akif Mammadova, M. A. Rustamova","doi":"10.22363/1815-5235-2022-18-3-269-279","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-3-269-279","url":null,"abstract":"The movements of a reinforced net are considered. Mesh systems are used in various areas of modern technology, aviation, fishing, and construction. In recent years, much attention has been drawn to the complete equations that describe the motion of a deformable thread. In accordance with the studied task, the reinforcement of the net is carried out by adding terms in the equations of motion. In the planar case, the static behavior of the structure is investigated, and equations of motion are derived that allow the study of motion. The problem of wave propagation in deformable filament systems, taking into account a significant deviation of the filament shape from the original rectilinear one, is mathematically very difficult, since the equations of motion are a system of nonlinear differential equations in partial derivatives. To solve the problem, the method of characteristics is used. As well the method of characteristics solves the problem of the propagation of unloading waves (in the case of a load, shock waves arise). Depending on the velocity distribution at the boundary, the distribution of the strain constant on the characteristics is determined. The results are constructed by numerical integration of the integrals of the characteristics found by the method. The solution using the characteristic equations shows the occurrence of traveling waves.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46543788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-28DOI: 10.22363/1815-5235-2022-18-3-215-227
Peter Chongo, S. Shambina, Oliver Tembo
Concrete is widely used as a building material throughout the world. However, its use in building structures is limited due to its low tensile strength. This problem can be partially solved using steel bars reinforcement, as well as using dispersed reinforcement with various types of fibers. The authors propose the simultaneous traditional reinforcement of a concrete structure with steel bars with additional dispersed reinforcement with natural coconut fibers, relatively cheap and widely available in many countries in Africa, Asia and Latin America. The purpose of this study is to analyze the effectiveness of the proposed solution by comparing the required amount of steel reinforcement (by weight) for a beam made of traditional concrete and a similar beam with additional dispersed reinforcement with coconut fibers. Deflections and cracking in beams were investigated. The analysis was carried out using Autodesk Robot Structural Analysis Professional 2022 software. The results showed that a beam additionally reinforced with coconut fiber requires 11% less steel reinforcement (by weight) compared to a similar beam made of traditional reinforced concrete. In addition, the coconut fiber reinforced beam experienced 6% less deflection and significantly less stress cracking compared to a simple concrete beam. These results proved that the approach proposed in the work noticeably improves the performance of reinforced concrete in the structure, and also makes it possible to obtain significant savings in reinforcing steel.
混凝土作为一种建筑材料在世界范围内被广泛使用。然而,由于其抗拉强度低,其在建筑结构中的使用受到限制。采用钢筋加固可以部分解决这一问题,也可以采用各种类型纤维的分散加固。这组作者提出了一种同时用钢筋对混凝土结构进行传统加固的方法,另外用天然椰子纤维进行分散加固,这种方法相对便宜,在非洲、亚洲和拉丁美洲的许多国家广泛使用。本研究的目的是通过比较由传统混凝土制成的梁和用椰子纤维额外分散加固的类似梁所需的钢筋(按重量计)来分析所提出的解决方案的有效性。梁的挠曲和开裂进行了研究。分析使用Autodesk Robot Structural analysis Professional 2022软件进行。结果表明,与传统钢筋混凝土制成的类似梁相比,用椰子纤维额外加固的梁所需的钢筋(按重量计)减少了11%。此外,与简单的混凝土梁相比,椰子纤维增强梁的挠度减少了6%,应力开裂也明显减少。这些结果证明,工作中提出的方法显着提高了结构中钢筋混凝土的性能,也使钢筋的显著节省成为可能。
{"title":"Analysis for the efficiency of additional dispersed reinforcement using coconut fiber for a concrete beam with traditional steel bar reinforcement","authors":"Peter Chongo, S. Shambina, Oliver Tembo","doi":"10.22363/1815-5235-2022-18-3-215-227","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-3-215-227","url":null,"abstract":"Concrete is widely used as a building material throughout the world. However, its use in building structures is limited due to its low tensile strength. This problem can be partially solved using steel bars reinforcement, as well as using dispersed reinforcement with various types of fibers. The authors propose the simultaneous traditional reinforcement of a concrete structure with steel bars with additional dispersed reinforcement with natural coconut fibers, relatively cheap and widely available in many countries in Africa, Asia and Latin America. The purpose of this study is to analyze the effectiveness of the proposed solution by comparing the required amount of steel reinforcement (by weight) for a beam made of traditional concrete and a similar beam with additional dispersed reinforcement with coconut fibers. Deflections and cracking in beams were investigated. The analysis was carried out using Autodesk Robot Structural Analysis Professional 2022 software. The results showed that a beam additionally reinforced with coconut fiber requires 11% less steel reinforcement (by weight) compared to a similar beam made of traditional reinforced concrete. In addition, the coconut fiber reinforced beam experienced 6% less deflection and significantly less stress cracking compared to a simple concrete beam. These results proved that the approach proposed in the work noticeably improves the performance of reinforced concrete in the structure, and also makes it possible to obtain significant savings in reinforcing steel.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45590026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-20DOI: 10.22363/1815-5235-2022-18-2-161-171
David Cajamarca-Zuniga, O. Kabantsev, Christopher Marin
Earthquake magnitude catalogues and peak ground acceleration (PGA) maps for Ecuador may be found in several studies, however, there are rare works on the characterisation of the epicentral macroseismic intensities associated with earthquakes. In view of the concept that macroseismic intensity enables us to categorise the extent and severity of damage to buildings and structures caused by an earthquake, this study aims to compile a macro-seismic intensity-based catalogue of earthquakes in Ecuador, characterise the epicentral macroseismic intensities associated to seismogenic sources and perform a comparison with the National Seismic Hazard Map. This paper is the first that presents a catalogue of earthquakes with macroseismic intensities ≥VII and a series of maps of earthquake epicentres according to intensity, focal depth, data and magnitude of seismic events in Ecuador, based on the study of historical and instrumental records from 1900 to 2021. The obtained data shows that 95% of the territory of Ecuador has a PGA 0.1 g, which corresponds to seismic intensities greater than VII, while regions with seismicityVIII (ag = 0.2 g) constitute 86%, and 3.8% of the territory of Ecuador has very high seismicity (IX), where the PGA exceeds 0.5 g. This information suggests that the normative National Seismic Hazard Map of Ecuador underestimate the hazard mainly in the south-east and in the Central Andes of Ecuador, and require an actualization.
{"title":"Macroseismic intensity-based catalogue of earthquakes in Ecuador","authors":"David Cajamarca-Zuniga, O. Kabantsev, Christopher Marin","doi":"10.22363/1815-5235-2022-18-2-161-171","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-2-161-171","url":null,"abstract":"Earthquake magnitude catalogues and peak ground acceleration (PGA) maps for Ecuador may be found in several studies, however, there are rare works on the characterisation of the epicentral macroseismic intensities associated with earthquakes. In view of the concept that macroseismic intensity enables us to categorise the extent and severity of damage to buildings and structures caused by an earthquake, this study aims to compile a macro-seismic intensity-based catalogue of earthquakes in Ecuador, characterise the epicentral macroseismic intensities associated to seismogenic sources and perform a comparison with the National Seismic Hazard Map. This paper is the first that presents a catalogue of earthquakes with macroseismic intensities ≥VII and a series of maps of earthquake epicentres according to intensity, focal depth, data and magnitude of seismic events in Ecuador, based on the study of historical and instrumental records from 1900 to 2021. The obtained data shows that 95% of the territory of Ecuador has a PGA 0.1 g, which corresponds to seismic intensities greater than VII, while regions with seismicityVIII (ag = 0.2 g) constitute 86%, and 3.8% of the territory of Ecuador has very high seismicity (IX), where the PGA exceeds 0.5 g. This information suggests that the normative National Seismic Hazard Map of Ecuador underestimate the hazard mainly in the south-east and in the Central Andes of Ecuador, and require an actualization.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49491050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-20DOI: 10.22363/1815-5235-2022-18-2-172-181
Ivan I. Iushkin, Shaimaa Ghanim Hakim Alamedy, N. Stashevskaya
The construction industry is one of the important pillars of the economy. Building Information Modeling (BIM) is a set of technologies that aims to enhance collaboration across the architecture, engineering, and construction industries to improve the productivity and quality of the design, construction, and maintenance phases of a building. Rethinking construction is the key to increasing productivity. However, BIM has not been widely adopted in the construction industry. It is necessary to understand the main problems hindering the implementation of BIM, consider the appropriate strategies that can be applied to gain a deeper understanding of BIM, conduct a comprehensive and systematic analysis of the factors influencing the implementation of BIM. Based on a literature review, a questionnaire survey and the collection of statistical data, factors of a negative impact on the implementation of BIM were identified. The results show that key factors influencing BIM adoption include a lack of trained professionals, of investment in staff training, of BIM standardization, as well as the position of leadership in organizations. This article puts forward some proposals to promote the implementation of BIM and specific measures to implement the widespread use of BIM technology in the construction industry.
{"title":"Problems and benefits of implementing BIM in the construction industry","authors":"Ivan I. Iushkin, Shaimaa Ghanim Hakim Alamedy, N. Stashevskaya","doi":"10.22363/1815-5235-2022-18-2-172-181","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-2-172-181","url":null,"abstract":"The construction industry is one of the important pillars of the economy. Building Information Modeling (BIM) is a set of technologies that aims to enhance collaboration across the architecture, engineering, and construction industries to improve the productivity and quality of the design, construction, and maintenance phases of a building. Rethinking construction is the key to increasing productivity. However, BIM has not been widely adopted in the construction industry. It is necessary to understand the main problems hindering the implementation of BIM, consider the appropriate strategies that can be applied to gain a deeper understanding of BIM, conduct a comprehensive and systematic analysis of the factors influencing the implementation of BIM. Based on a literature review, a questionnaire survey and the collection of statistical data, factors of a negative impact on the implementation of BIM were identified. The results show that key factors influencing BIM adoption include a lack of trained professionals, of investment in staff training, of BIM standardization, as well as the position of leadership in organizations. This article puts forward some proposals to promote the implementation of BIM and specific measures to implement the widespread use of BIM technology in the construction industry.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48307625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-20DOI: 10.22363/1815-5235-2022-18-2-93-103
O. Inozemtseva, V. K. Inozemtsev
The results of numerical calculations can and should be verified, but testing a complex and detailed computational model is problematic. This possibility is provided by simplified models represented by simple computational schemes that are available for qualitative analysis, and the numerical results obtained are predictable. Such calculation schemes, as a rule, describe individual calculation tasks facing designers. For example, linear stability analysis is offered by the American Institute of Steel Structures (AISC). One of these models is discussed. The model under consideration is based on a linear analysis of the stability of a cantilever rack, which can be considered as a simple model of the bearing trunk of a high-rise building. A comparison of critical loads based on nonlinear and linear analysis of the stability of the cantilever rack is carried out. It is concluded that the considered linear model makes it possible to obtain a preliminary estimate of the critical load to verify the results of computer calculations using more complex models of the general stability of the equilibrium of the bearing trunk of a high-altitude object.
{"title":"Nonlinear and linear analysis of the overall stability of the load-bearing system of a high-rise building with a load-bearing trunk","authors":"O. Inozemtseva, V. K. Inozemtsev","doi":"10.22363/1815-5235-2022-18-2-93-103","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-2-93-103","url":null,"abstract":"The results of numerical calculations can and should be verified, but testing a complex and detailed computational model is problematic. This possibility is provided by simplified models represented by simple computational schemes that are available for qualitative analysis, and the numerical results obtained are predictable. Such calculation schemes, as a rule, describe individual calculation tasks facing designers. For example, linear stability analysis is offered by the American Institute of Steel Structures (AISC). One of these models is discussed. The model under consideration is based on a linear analysis of the stability of a cantilever rack, which can be considered as a simple model of the bearing trunk of a high-rise building. A comparison of critical loads based on nonlinear and linear analysis of the stability of the cantilever rack is carried out. It is concluded that the considered linear model makes it possible to obtain a preliminary estimate of the critical load to verify the results of computer calculations using more complex models of the general stability of the equilibrium of the bearing trunk of a high-altitude object.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47134927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-20DOI: 10.22363/1815-5235-2022-18-2-182-192
A. S. Markovich, D. A. Miloserdova
The question of increasing the reliability and durability of reinforced concrete structures is a priority. One of the ways to increase the strength of concrete is using of dispersed reinforcement. The interest of using of fiber-reinforced concrete in Russia, as well as in Europe, Asia and the USA has increased significantly in recent ten years. The improvement of the physical and mechanical properties of concrete is noted to depend on the reinforcement parameters, such as the volume content of the fiber, the characteristics of the dispersed reinforcement, the structure of the concrete matrix, etc. Authors consider various types of fibers for dispersed concrete reinforcement, specifically polypropylene, polyethylene, nylon, acrylic, polyester, cotton, asbestos, glass, basalt, steel, carbon. Description of the main advantages and disadvantages of each type of fiber is given. Comparative characteristics are presented in terms of density, tensile strength, modulus of elasticity, elongation at fracture of the materials used to manufacture the fiber. The influence of fibers on crack strength of fiber-reinforced concrete under impact loads is studied. Analytical review of existing works found that it is possible to achieve a significant increase of strength of fiber-reinforced concrete in axial compression, tension, tension in bending, shear compared to ordinary heavy concrete.
{"title":"Properties of dispersed fibers for efficient concrete reinforcement","authors":"A. S. Markovich, D. A. Miloserdova","doi":"10.22363/1815-5235-2022-18-2-182-192","DOIUrl":"https://doi.org/10.22363/1815-5235-2022-18-2-182-192","url":null,"abstract":"The question of increasing the reliability and durability of reinforced concrete structures is a priority. One of the ways to increase the strength of concrete is using of dispersed reinforcement. The interest of using of fiber-reinforced concrete in Russia, as well as in Europe, Asia and the USA has increased significantly in recent ten years. The improvement of the physical and mechanical properties of concrete is noted to depend on the reinforcement parameters, such as the volume content of the fiber, the characteristics of the dispersed reinforcement, the structure of the concrete matrix, etc. Authors consider various types of fibers for dispersed concrete reinforcement, specifically polypropylene, polyethylene, nylon, acrylic, polyester, cotton, asbestos, glass, basalt, steel, carbon. Description of the main advantages and disadvantages of each type of fiber is given. Comparative characteristics are presented in terms of density, tensile strength, modulus of elasticity, elongation at fracture of the materials used to manufacture the fiber. The influence of fibers on crack strength of fiber-reinforced concrete under impact loads is studied. Analytical review of existing works found that it is possible to achieve a significant increase of strength of fiber-reinforced concrete in axial compression, tension, tension in bending, shear compared to ordinary heavy concrete.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47665859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}