Pub Date : 2019-05-15DOI: 10.5772/INTECHOPEN.84410
M. Gaiceanu
The introductory chapter has in view an incursion in discovering electricity, how can be handled, and the future of it. The chapter starts with the ancient discovery of electricity. Starting from the Kite experiment to the energy use of lightning is mentioned in the New Discoveries in the Electricity section. Moreover, the current path from the electrostatic machine to ion wind propulsion system is mentioned in the same section. A short history of energy conversion technology is described in the forthcoming section. Different electric power conversion technologies are mentioned. The possible pathways of the future electric power conversion are mentioned. Some ideas about electric power conversion development are mentioned at the end of this chapter.
{"title":"Introductory Chapter: Electric Power Conversion","authors":"M. Gaiceanu","doi":"10.5772/INTECHOPEN.84410","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.84410","url":null,"abstract":"The introductory chapter has in view an incursion in discovering electricity, how can be handled, and the future of it. The chapter starts with the ancient discovery of electricity. Starting from the Kite experiment to the energy use of lightning is mentioned in the New Discoveries in the Electricity section. Moreover, the current path from the electrostatic machine to ion wind propulsion system is mentioned in the same section. A short history of energy conversion technology is described in the forthcoming section. Different electric power conversion technologies are mentioned. The possible pathways of the future electric power conversion are mentioned. Some ideas about electric power conversion development are mentioned at the end of this chapter.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121186834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-15DOI: 10.5772/INTECHOPEN.81629
M. Salem, Khalid Yahya
Recently, DC/DC resonant converters have received much research interest as a result of the advancements in their applications. This increase in their industrial application has given rise to more efforts in enhancing the soft-switching, smooth waveforms, high-power density, and high efficiency features of the resonant converters. Their suitability to high frequency usage and capacity to minimize switching losses have endeared them to industrial applications compared to the hard-switching conventional converters. However, studies have continued to suggest improvements in certain areas of these converters, including high-power density, wide load variations, reliability, high efficiency, minimal number of components, and low cost. In this chapter, the resonant power converters (RPCs), their principles, and their classifications based on the DC-DC family of converters are presented. The recent advancements in the constructions, operational principles, advantages, and disadvantages were also reviewed. From the review of different topologies of the resonant DC-DC converters, it has been suggested that more studies are necessary to produce power circuits, which can address the drawbacks of the existing one.
{"title":"Resonant Power Converters","authors":"M. Salem, Khalid Yahya","doi":"10.5772/INTECHOPEN.81629","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81629","url":null,"abstract":"Recently, DC/DC resonant converters have received much research interest as a result of the advancements in their applications. This increase in their industrial application has given rise to more efforts in enhancing the soft-switching, smooth waveforms, high-power density, and high efficiency features of the resonant converters. Their suitability to high frequency usage and capacity to minimize switching losses have endeared them to industrial applications compared to the hard-switching conventional converters. However, studies have continued to suggest improvements in certain areas of these converters, including high-power density, wide load variations, reliability, high efficiency, minimal number of components, and low cost. In this chapter, the resonant power converters (RPCs), their principles, and their classifications based on the DC-DC family of converters are presented. The recent advancements in the constructions, operational principles, advantages, and disadvantages were also reviewed. From the review of different topologies of the resonant DC-DC converters, it has been suggested that more studies are necessary to produce power circuits, which can address the drawbacks of the existing one.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126309826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-15DOI: 10.5772/INTECHOPEN.82302
M. Ebrahim, R. Mohamed
This chapter presents the comparative analysis between perturb & observe (P&O), incremental conductance (Inc Cond), and fractional open-circuit voltage (FOCV) algorithms using fractional order control & a new meta-heuristic called GreyWolf optimizer (GWO) for extracting the maximum power from photovoltaic (PV) array. PV array systems are equipped with maximum power point tracking controllers (MPPTCs) to maximize the output power even in the case of rapid changes of the panel’s temperature and irradiance. In this chapter, three cost effective MPPTCs are introduced: FOCV, P&O and Inc. Cond. The output voltage of the array is boosted up to a higher value so it can be interfaced to the local medium voltage distribution network.
{"title":"Comparative Study and Simulation of Different Maximum Power Point Tracking (MPPT) Techniques Using Fractional Control and Grey Wolf Optimizer for Grid Connected PV System with Battery","authors":"M. Ebrahim, R. Mohamed","doi":"10.5772/INTECHOPEN.82302","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82302","url":null,"abstract":"This chapter presents the comparative analysis between perturb & observe (P&O), incremental conductance (Inc Cond), and fractional open-circuit voltage (FOCV) algorithms using fractional order control & a new meta-heuristic called GreyWolf optimizer (GWO) for extracting the maximum power from photovoltaic (PV) array. PV array systems are equipped with maximum power point tracking controllers (MPPTCs) to maximize the output power even in the case of rapid changes of the panel’s temperature and irradiance. In this chapter, three cost effective MPPTCs are introduced: FOCV, P&O and Inc. Cond. The output voltage of the array is boosted up to a higher value so it can be interfaced to the local medium voltage distribution network.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128601338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-15DOI: 10.5772/INTECHOPEN.82323
Kiran Singh
In this article, a mixed current-flux d-q modeling of a saturated compensated six-phase self-excited induction generator (SP-SEIG) is adopted during the analysis. Modeling equations include two independent variables namely stator current and magnetizing flux rather than single independent variables either current or flux. Mixed modeling with stator current and magnetizing flux is simple by having only four saturation elements and beneficial in study of both stator and rotor parameters. Performance equations for the given machine utilize the steady-state saturated magnetizing inductance (Lm) and dynamic inductance (L). Validation of the analytical approach was in good agreement along with three-phase resistive or resistive-inductive loading and also determined the relevant improvement in voltage regulation of machine using series capacitor compensation schemes.
{"title":"Analysis of Compensated Six-Phase Self-Excited Induction Generator Using Double Mixed State-Space Variable Dynamic Model","authors":"Kiran Singh","doi":"10.5772/INTECHOPEN.82323","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82323","url":null,"abstract":"In this article, a mixed current-flux d-q modeling of a saturated compensated six-phase self-excited induction generator (SP-SEIG) is adopted during the analysis. Modeling equations include two independent variables namely stator current and magnetizing flux rather than single independent variables either current or flux. Mixed modeling with stator current and magnetizing flux is simple by having only four saturation elements and beneficial in study of both stator and rotor parameters. Performance equations for the given machine utilize the steady-state saturated magnetizing inductance (Lm) and dynamic inductance (L). Validation of the analytical approach was in good agreement along with three-phase resistive or resistive-inductive loading and also determined the relevant improvement in voltage regulation of machine using series capacitor compensation schemes.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"213 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123155290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-11DOI: 10.5772/intechopen.81436
M. Masoud
Multiphase systems including multiphase generators or motors, especially five-phase, offer improved performance compared to three-phase counterpart. Five-phase generators could generate power in applications such as, but not limited to, wind power generation, electric vehicles, aerospace, and oil and gas. The five-phase generator output requires converter system such as AC-DC converters. This chapter introduces the basic construction and performance analysis for uncontrolled/con-trolled five-phase line commutated rectifier guided by numerical examples. This rectifier is suitable for wind energy applications to be the intermediate stage between five-phase generator and DC load or inverter stage. The filtration for AC side and effects of source inductances are detailed in other references. Here, this chapter gives the reader a quick idea about the analysis and performance of multiphase line commutated rectifiers and specifically five phase.
{"title":"Five-Phase Line Commutated Rectifiers","authors":"M. Masoud","doi":"10.5772/intechopen.81436","DOIUrl":"https://doi.org/10.5772/intechopen.81436","url":null,"abstract":"Multiphase systems including multiphase generators or motors, especially five-phase, offer improved performance compared to three-phase counterpart. Five-phase generators could generate power in applications such as, but not limited to, wind power generation, electric vehicles, aerospace, and oil and gas. The five-phase generator output requires converter system such as AC-DC converters. This chapter introduces the basic construction and performance analysis for uncontrolled/con-trolled five-phase line commutated rectifier guided by numerical examples. This rectifier is suitable for wind energy applications to be the intermediate stage between five-phase generator and DC load or inverter stage. The filtration for AC side and effects of source inductances are detailed in other references. Here, this chapter gives the reader a quick idea about the analysis and performance of multiphase line commutated rectifiers and specifically five phase.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123587216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-20DOI: 10.5772/INTECHOPEN.83626
Dana M. Alghool, Noora Al-Khalfan, S. Attiya, F. Musharavati
In hot arid climates, freshwater and power are produced simultaneously through seawater desalination since these regions receive little rainfall. This results in a unique urban water/power cycle that often faces sustainability and resilience challenges. Elsewhere, such challenges have been addressed through smart grid technologies. This chapter explores opportunities and initiatives for implementing smart grid technologies at household level for a case study in Qatar. A functional dual-purpose smart water/power nanogrid is developed. The nanogrid includes multiloop systems for on-site water recycling and on-site power generation based on sustainability concepts. A prototype dual-purpose GSM-based smart water/ power nanogrid is assembled and tested in a laboratory. Results of case study implementation show that the proposed nanogrid can reduce energy and water consumptions at household level by 25 and 20%, respectively. Economic analysis shows that implementing the nanogrid at household level has a payback period of 10 years. Hence, larger-scale projects may improve investment paybacks. Extension of the nanogrid into a resilient communal microgrid and/or mesogrid is discussed based on the concept of energy semantics. The modularity of the nanogrid allows the design to be adapted for different scale applications. Perspectives on how the nanogrid can be expanded for large scale applications are outlined. is expected to rise in large-scale applications. Payback analysis shows that the combined smart water power nanogrid is moderately attractive and yet environmentally friendly by nature. Prototype tests demonstrated that the proposed system could function properly when implemented in homes. Improvements in gray water collection and treatment processes could result in more benefits. A future improvement of the prototype is to devise the capability to identify the number of leaks as well as determine the exact location of the leaks. Results of such findings can shed light on the further contribution of nanogrids in reducing (a) water losses and (b) water and energy consumptions, thus making homes more energy efficient.
{"title":"Perspectives on Dual-Purpose Smart Water Power Infrastructures for Households in Arid Regions","authors":"Dana M. Alghool, Noora Al-Khalfan, S. Attiya, F. Musharavati","doi":"10.5772/INTECHOPEN.83626","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.83626","url":null,"abstract":"In hot arid climates, freshwater and power are produced simultaneously through seawater desalination since these regions receive little rainfall. This results in a unique urban water/power cycle that often faces sustainability and resilience challenges. Elsewhere, such challenges have been addressed through smart grid technologies. This chapter explores opportunities and initiatives for implementing smart grid technologies at household level for a case study in Qatar. A functional dual-purpose smart water/power nanogrid is developed. The nanogrid includes multiloop systems for on-site water recycling and on-site power generation based on sustainability concepts. A prototype dual-purpose GSM-based smart water/ power nanogrid is assembled and tested in a laboratory. Results of case study implementation show that the proposed nanogrid can reduce energy and water consumptions at household level by 25 and 20%, respectively. Economic analysis shows that implementing the nanogrid at household level has a payback period of 10 years. Hence, larger-scale projects may improve investment paybacks. Extension of the nanogrid into a resilient communal microgrid and/or mesogrid is discussed based on the concept of energy semantics. The modularity of the nanogrid allows the design to be adapted for different scale applications. Perspectives on how the nanogrid can be expanded for large scale applications are outlined. is expected to rise in large-scale applications. Payback analysis shows that the combined smart water power nanogrid is moderately attractive and yet environmentally friendly by nature. Prototype tests demonstrated that the proposed system could function properly when implemented in homes. Improvements in gray water collection and treatment processes could result in more benefits. A future improvement of the prototype is to devise the capability to identify the number of leaks as well as determine the exact location of the leaks. Results of such findings can shed light on the further contribution of nanogrids in reducing (a) water losses and (b) water and energy consumptions, thus making homes more energy efficient.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114418763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-05DOI: 10.5772/INTECHOPEN.84568
B. Du, Jin Li, Liang Hucheng
Many researchers have proposed a variety of mathematical models to simulate the surface charge accumulation process of DC-GIS/GIL spacers. However, few of them took the gas collision ionization and charge trapping-detrapping process into consideration. This chapter combined the plasma hydrodynamics and charge transport equations and built a modified model. Some conclusions are shown as follows: for the basin-type spacer, the surface charge has the same polarity as the applied voltage on the lower surface but the opposite polarity on the upper surface. For the disc-type spacer, the surface charge has the same polarity as the applied voltage near the shell but the opposite polarity near the conductor under negative voltage. But under positive voltage, negative charge exists almost on the whole surface. The most serious distortion of the electric field occurs at the triple junction of epoxy spacer. Under load condition, there is an obvious temperature rise on the conductor due to joule heating, which has a great influence on the electric field distribution. The application of shielding electrodes has the function of field grading at the triple junction, which can be referred in the DC GIS/GIL design.
{"title":"Electrical Field Distribution along HVDC GIL Spacer in SF 6 /N 2 Gaseous Mixture","authors":"B. Du, Jin Li, Liang Hucheng","doi":"10.5772/INTECHOPEN.84568","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.84568","url":null,"abstract":"Many researchers have proposed a variety of mathematical models to simulate the surface charge accumulation process of DC-GIS/GIL spacers. However, few of them took the gas collision ionization and charge trapping-detrapping process into consideration. This chapter combined the plasma hydrodynamics and charge transport equations and built a modified model. Some conclusions are shown as follows: for the basin-type spacer, the surface charge has the same polarity as the applied voltage on the lower surface but the opposite polarity on the upper surface. For the disc-type spacer, the surface charge has the same polarity as the applied voltage near the shell but the opposite polarity near the conductor under negative voltage. But under positive voltage, negative charge exists almost on the whole surface. The most serious distortion of the electric field occurs at the triple junction of epoxy spacer. Under load condition, there is an obvious temperature rise on the conductor due to joule heating, which has a great influence on the electric field distribution. The application of shielding electrodes has the function of field grading at the triple junction, which can be referred in the DC GIS/GIL design.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128229688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-08DOI: 10.5772/INTECHOPEN.82441
I. Ramljak, D. Bago
Photovoltaic plants penetrate rapidly in distribution grid. Problems with their integration in distribution grid can exist in terms of load flow, protection settings, power quality, etc. This chapter analyzes influence of photovoltaic plants connection in distribution grid (0.4 and 10 kV voltage level) on power quality. The main focus will be on influence of photovoltaic plant connection point on distribution grid (hosting capacity — strength of the grid) in terms of power quality. Norms and regulations about influence of photovoltaic plants on distribution grid in terms of power quality will be analyzed. Influence of photovoltaic plants on distribution grid in theoretical aspects will be presented. Several case studies then will be described. Those case studies present different connection points of photovoltaic plants on distribution grid. Comparison of theoretical assumptions and real case studies will be compared. Some observations of real case studies and their impact on theoretical aspects, norms, and regulations about photovoltaic plant influence on distribution grid will be introduced.
{"title":"PV Plant Influence on Distribution Grid in Terms of Power Quality Considering Hosting Capacity of the Grid","authors":"I. Ramljak, D. Bago","doi":"10.5772/INTECHOPEN.82441","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.82441","url":null,"abstract":"Photovoltaic plants penetrate rapidly in distribution grid. Problems with their integration in distribution grid can exist in terms of load flow, protection settings, power quality, etc. This chapter analyzes influence of photovoltaic plants connection in distribution grid (0.4 and 10 kV voltage level) on power quality. The main focus will be on influence of photovoltaic plant connection point on distribution grid (hosting capacity — strength of the grid) in terms of power quality. Norms and regulations about influence of photovoltaic plants on distribution grid in terms of power quality will be analyzed. Influence of photovoltaic plants on distribution grid in theoretical aspects will be presented. Several case studies then will be described. Those case studies present different connection points of photovoltaic plants on distribution grid. Comparison of theoretical assumptions and real case studies will be compared. Some observations of real case studies and their impact on theoretical aspects, norms, and regulations about photovoltaic plant influence on distribution grid will be introduced.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121251444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-27DOI: 10.5772/INTECHOPEN.81977
Carlos A. Reusser
The yet growing demand for higher demanding industrial applications and the global concern about harmful emissions in the atmosphere have increased the interest for new developments in electric machines and power converters. To meet these new requirements, multiphase machines have become a very attractive solution, offering potential advantages over three-phase classical solutions. Multiphase machine ’ s power demand can be split over more than three phases, thus reducing the electric field stress on each winding (protecting the insulation system) and the requirements on maximum power ratings, for semiconductor devices. Moreover, only two degrees of freedom (i.e. two independently controllable currents) are required for independent flux and torque control. Due to the previous facts, the use of multiphase drives has become very attractive for applications and developments in areas such as electric ship propulsion, more-electric aircraft, electric and hybrid electric road vehicles, electric locomotive traction and in renewable electric energy generation. As a consequence of this multiphase drive tendency, the development of power converter topologies, capable of dealing with high power ratings and handling multiphase winding distributions, has encourage the development of new converter topologies, control strategies and mathematical tools, to face this new challenge.
{"title":"Power Converter Topologies for Multiphase Drive Applications","authors":"Carlos A. Reusser","doi":"10.5772/INTECHOPEN.81977","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.81977","url":null,"abstract":"The yet growing demand for higher demanding industrial applications and the global concern about harmful emissions in the atmosphere have increased the interest for new developments in electric machines and power converters. To meet these new requirements, multiphase machines have become a very attractive solution, offering potential advantages over three-phase classical solutions. Multiphase machine ’ s power demand can be split over more than three phases, thus reducing the electric field stress on each winding (protecting the insulation system) and the requirements on maximum power ratings, for semiconductor devices. Moreover, only two degrees of freedom (i.e. two independently controllable currents) are required for independent flux and torque control. Due to the previous facts, the use of multiphase drives has become very attractive for applications and developments in areas such as electric ship propulsion, more-electric aircraft, electric and hybrid electric road vehicles, electric locomotive traction and in renewable electric energy generation. As a consequence of this multiphase drive tendency, the development of power converter topologies, capable of dealing with high power ratings and handling multiphase winding distributions, has encourage the development of new converter topologies, control strategies and mathematical tools, to face this new challenge.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"134 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131664611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-05DOI: 10.5772/INTECHOPEN.80696
Thaiyal Naayagi Ramasamy
The insulated-gate bipolar transistor (IGBT) offers low conduction loss and improved performance and, hence, is a potential candidate for high-current and high-voltage power electronic applications. This chapter presents the power loss estimation of IGBTs as employed in a high-voltage high-power dual active bridge (DAB) DC-DC converter. The mathematical models of the device currents are derived, and the power loss prediction is clearly explained using the mathematical models. There are many parameters to consider when selecting an appropriate power device for a given application. This chapter highlights the step-by-step procedure for selecting suitable IGBTs for a 20 kW, 540/125 V, 20 kHz DAB converter designed for aerospace energy storage systems. Experimental results are given to demonstrate the device performance at 540 V, 80 A operation of high-voltage IGBTs and 125 V, 300 A operation of low-voltage IGBTs and thus validate the selection procedure presented.
{"title":"Power Device Loss Analysis of a High-Voltage High-Power Dual Active Bridge DC-DC Converter","authors":"Thaiyal Naayagi Ramasamy","doi":"10.5772/INTECHOPEN.80696","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.80696","url":null,"abstract":"The insulated-gate bipolar transistor (IGBT) offers low conduction loss and improved performance and, hence, is a potential candidate for high-current and high-voltage power electronic applications. This chapter presents the power loss estimation of IGBTs as employed in a high-voltage high-power dual active bridge (DAB) DC-DC converter. The mathematical models of the device currents are derived, and the power loss prediction is clearly explained using the mathematical models. There are many parameters to consider when selecting an appropriate power device for a given application. This chapter highlights the step-by-step procedure for selecting suitable IGBTs for a 20 kW, 540/125 V, 20 kHz DAB converter designed for aerospace energy storage systems. Experimental results are given to demonstrate the device performance at 540 V, 80 A operation of high-voltage IGBTs and 125 V, 300 A operation of low-voltage IGBTs and thus validate the selection procedure presented.","PeriodicalId":336325,"journal":{"name":"Electric Power Conversion","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131143190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}