首页 > 最新文献

2013 IEEE International Workshop on Genomic Signal Processing and Statistics最新文献

英文 中文
Compromised intervention policies for phenotype alteration 对表型改变的折衷干预政策
Pub Date : 2013-11-01 DOI: 10.1109/GENSIPS.2013.6735923
Mohammadmahdi R. Yousefi
We take a Markovian approach to modeling gene regulatory networks and assume that phenotypes are characterized by the steady-state probability distribution of such networks. We desire intervention policies that maximally shift the probability mass from undesirable states to desirable ones. In doing so, we might also be concerned about the steady-state mass of some “ambiguous” states, which are not directly related to the pathology of interest but could be associated with some anticipated risks. We propose a direct formulation of this constrained optimization problem, rather than assuming a subjective cost function, and provide optimal intervention policies. Within this framework, we investigate the performance of “compromised” policies, these being policies for which we accept some increase of the ambiguous mass to achieve more decrease in the undesirable mass.
我们采用马尔可夫方法来建模基因调控网络,并假设表型是由这种网络的稳态概率分布表征的。我们希望干预政策能够最大限度地将概率质量从不受欢迎的状态转移到理想的状态。在这样做的过程中,我们可能还会关注一些“模糊”状态的稳态质量,这些状态与感兴趣的病理没有直接关系,但可能与一些预期的风险有关。我们提出了一个约束优化问题的直接表述,而不是假设一个主观的成本函数,并提供了最优的干预策略。在这个框架内,我们研究了“妥协”策略的性能,这些策略我们接受一些模糊质量的增加,以实现更多的减少不希望的质量。
{"title":"Compromised intervention policies for phenotype alteration","authors":"Mohammadmahdi R. Yousefi","doi":"10.1109/GENSIPS.2013.6735923","DOIUrl":"https://doi.org/10.1109/GENSIPS.2013.6735923","url":null,"abstract":"We take a Markovian approach to modeling gene regulatory networks and assume that phenotypes are characterized by the steady-state probability distribution of such networks. We desire intervention policies that maximally shift the probability mass from undesirable states to desirable ones. In doing so, we might also be concerned about the steady-state mass of some “ambiguous” states, which are not directly related to the pathology of interest but could be associated with some anticipated risks. We propose a direct formulation of this constrained optimization problem, rather than assuming a subjective cost function, and provide optimal intervention policies. Within this framework, we investigate the performance of “compromised” policies, these being policies for which we accept some increase of the ambiguous mass to achieve more decrease in the undesirable mass.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":" 14","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113951963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROBNCA: Robust Network Component Analysis for recovering transcription factor activities ROBNCA:恢复转录因子活性的稳健网络成分分析
Pub Date : 2013-10-01 DOI: 10.1109/GENSIPS.2013.6735919
Amina Noor, A. Ahmad, E. Serpedin, M. Nounou, H. Nounou
Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF) - gene regulations. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. ROBNCA algorithm provides a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared to FastNCA and the Non-iterative NCA (NI-NCA) and is shown to estimate the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, and/or amount of outliers in case of synthetic data. The run time of the ROBNCA algorithm is comparable to that of FastNCA, and is hundreds of times faster than NI-NCA.
网络成分分析(NCA)是利用基因表达数据和转录因子基因调控的先验信息重构转录因子活性(TFA)的一种有效方法。我们提出鲁棒网络成分分析(ROBNCA),这是一种新的迭代算法,可以明确地模拟微阵列数据中可能的异常值。ROBNCA算法为估计连接矩阵提供了封闭形式的解决方案,这在以前的贡献中是不可用的。ROBNCA算法与FastNCA和非迭代NCA (NI-NCA)进行了比较,结果表明,无论噪声变化,在合成数据的情况下,与FastNCA和NI-NCA相比,ROBNCA算法估计TF活性谱以及TF基因控制强度矩阵的准确性要高得多。ROBNCA算法的运行时间与FastNCA相当,比NI-NCA快数百倍。
{"title":"ROBNCA: Robust Network Component Analysis for recovering transcription factor activities","authors":"Amina Noor, A. Ahmad, E. Serpedin, M. Nounou, H. Nounou","doi":"10.1109/GENSIPS.2013.6735919","DOIUrl":"https://doi.org/10.1109/GENSIPS.2013.6735919","url":null,"abstract":"Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF) - gene regulations. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. ROBNCA algorithm provides a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared to FastNCA and the Non-iterative NCA (NI-NCA) and is shown to estimate the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, and/or amount of outliers in case of synthetic data. The run time of the ROBNCA algorithm is comparable to that of FastNCA, and is hundreds of times faster than NI-NCA.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114879905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
期刊
2013 IEEE International Workshop on Genomic Signal Processing and Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1