T. V. Sumithra, Leena Ragha, Arpit Vaishya, Rishi Desai
The pace of technological advancement is accelerating, and one of the latest developments is the emergence of Augmented Reality (AR) and Mixed Reality (MR) glasses as an extension of smartphones. The key to success lies in innovative research and technology that can reach a wide audience. To ensure a positive user experience, AR/MR glasses must offer interfaces that are easy to use, memorable, and leave a lasting impression. While Nielsen's heuristics are widely accepted as the standard for usability, it is clear that non-traditional applications require a rethinking of these heuristics to best suit their unique needs. A fresh usability heuristic for augmented and MR applications is designed by combining and modifying the existing models, such as Nielsen's 10 heuristics, Technology Acceptance Model, and Software Usability Measurement Inventory. The resulting framework incorporates 21 main heuristics and 60 sub heuristics. The 21 main heuristics are further grouped into the Norman's cognitive theory model based on the three levels of processing. The industry experts evaluated and validated the usability framework and established a higher level of effectiveness in identifying more usability problems compared with Nielsen's heuristics.
{"title":"Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process","authors":"T. V. Sumithra, Leena Ragha, Arpit Vaishya, Rishi Desai","doi":"10.1049/ccs2.12109","DOIUrl":"https://doi.org/10.1049/ccs2.12109","url":null,"abstract":"<p>The pace of technological advancement is accelerating, and one of the latest developments is the emergence of Augmented Reality (AR) and Mixed Reality (MR) glasses as an extension of smartphones. The key to success lies in innovative research and technology that can reach a wide audience. To ensure a positive user experience, AR/MR glasses must offer interfaces that are easy to use, memorable, and leave a lasting impression. While Nielsen's heuristics are widely accepted as the standard for usability, it is clear that non-traditional applications require a rethinking of these heuristics to best suit their unique needs. A fresh usability heuristic for augmented and MR applications is designed by combining and modifying the existing models, such as Nielsen's 10 heuristics, Technology Acceptance Model, and Software Usability Measurement Inventory. The resulting framework incorporates 21 main heuristics and 60 sub heuristics. The 21 main heuristics are further grouped into the Norman's cognitive theory model based on the three levels of processing. The industry experts evaluated and validated the usability framework and established a higher level of effectiveness in identifying more usability problems compared with Nielsen's heuristics.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"6 1-3","pages":"26-35"},"PeriodicalIF":1.2,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ability to effectively classify human emotion states is critically important for human-computer or human-robot interactions. However, emotion classification with physiological signals is still a challenging problem due to the diversity of emotion expression and the characteristic differences in different modal signals. A novel learning-based network architecture is presented that can exploit four-modal physiological signals, electrocardiogram, electrodermal activity, electromyography, and blood volume pulse, and make a classification of emotion states. It features two kinds of attention modules, feature-level, and semantic-level, which drive the network to focus on the information-rich features by mimicking the human attention mechanism. The feature-level attention module encodes the rich information of each physiological signal. While the semantic-level attention module captures the semantic dependencies among modals. The performance of the designed network is evaluated with the open-source Wearable Stress and Affect Detection dataset. The developed emotion classification system achieves an accuracy of 83.88%. Results demonstrated that the proposed network could effectively process four-modal physiological signals and achieve high accuracy of emotion classification.
{"title":"Emotion classification with multi-modal physiological signals using multi-attention-based neural network","authors":"Chengsheng Zou, Zhen Deng, Bingwei He, Maosong Yan, Jie Wu, Zhaoju Zhu","doi":"10.1049/ccs2.12107","DOIUrl":"https://doi.org/10.1049/ccs2.12107","url":null,"abstract":"<p>The ability to effectively classify human emotion states is critically important for human-computer or human-robot interactions. However, emotion classification with physiological signals is still a challenging problem due to the diversity of emotion expression and the characteristic differences in different modal signals. A novel learning-based network architecture is presented that can exploit four-modal physiological signals, electrocardiogram, electrodermal activity, electromyography, and blood volume pulse, and make a classification of emotion states. It features two kinds of attention modules, feature-level, and semantic-level, which drive the network to focus on the information-rich features by mimicking the human attention mechanism. The feature-level attention module encodes the rich information of each physiological signal. While the semantic-level attention module captures the semantic dependencies among modals. The performance of the designed network is evaluated with the open-source Wearable Stress and Affect Detection dataset. The developed emotion classification system achieves an accuracy of 83.88%. Results demonstrated that the proposed network could effectively process four-modal physiological signals and achieve high accuracy of emotion classification.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"6 1-3","pages":"1-11"},"PeriodicalIF":1.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The utilisation of P2P tech in streaming media live broadcasting algorithm can effectively link the nodes in the endpoint and accelerate the establishment of efficient transmission channels between nodes, so as to ensure the data feasibility of video live broadcasting of terminal nodes. The simulation system of immersive virtual reality tech provides intelligent interactive experience and design framework. Its integration with P2P network streaming media live broadcast can bring users a stronger sense of experience, interaction and substitution, and provide high-quality streaming media live broadcast service. On account of this, the authors first analyse the principle and utilisation of peer-to-peer network tech, then study the streaming media live broadcast algorithm considering peer-to-peer network and the design of P2P-based streaming media live broadcast algorithm, and finally give the immersive virtual reality simulation of P2P-based streaming media live broadcast scheduling algorithm.
{"title":"Research on the design and simulation of immersive VR considering peer-to-peer streaming media live broadcasting algorithm","authors":"Hu Jin, Rong Zheng","doi":"10.1049/ccs2.12100","DOIUrl":"https://doi.org/10.1049/ccs2.12100","url":null,"abstract":"<p>The utilisation of P2P tech in streaming media live broadcasting algorithm can effectively link the nodes in the endpoint and accelerate the establishment of efficient transmission channels between nodes, so as to ensure the data feasibility of video live broadcasting of terminal nodes. The simulation system of immersive virtual reality tech provides intelligent interactive experience and design framework. Its integration with P2P network streaming media live broadcast can bring users a stronger sense of experience, interaction and substitution, and provide high-quality streaming media live broadcast service. On account of this, the authors first analyse the principle and utilisation of peer-to-peer network tech, then study the streaming media live broadcast algorithm considering peer-to-peer network and the design of P2P-based streaming media live broadcast algorithm, and finally give the immersive virtual reality simulation of P2P-based streaming media live broadcast scheduling algorithm.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"6 4","pages":"65-73"},"PeriodicalIF":1.2,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uday Kulkarni, Meena S M, Raghavendra A Hallyal, Prasanna H Sulibhavi, Sunil V. G, Shankru Guggari, Akshay R. Shanbhag
The artificial intelligence (AI) within the last decade has experienced a rapid development and has attained power to simulate human‐thinking in various situations. When the deep neural networks (DNNs) are trained with huge dataset and high computational resources it can bring out great outcomes. But the learning process of DNN is very much complicated and time‐consuming. In various circumstances, where there is a data‐scarcity, the algorithms are not capable of learning tasks at a faster rate and perform nearer to that of human intelligence. With advancements in deep meta‐learning in several research studies, this problem has been dealt. Meta‐learning has outspread range of applications where the meta‐data (data about data) of the either tasks, data or the models which were previously trained can be employed to optimise the learning. So in order to get an insight of all existing meta‐learning approaches for DNN model optimisation, the authors performed survey introducing different meta‐learning techniques and also the current optimisation‐based approaches, their merits and open challenges. In this research, the Reptile meta‐learning algorithm was chosen for the experiment. As Reptile uses first‐order derivatives during optimisation process, hence making it feasible to solve optimisation problems. The authors achieved a 5% increase in accuracy with the proposed version of Reptile meta‐learning algorithm.
{"title":"Optimisation of deep neural network model using Reptile meta learning approach","authors":"Uday Kulkarni, Meena S M, Raghavendra A Hallyal, Prasanna H Sulibhavi, Sunil V. G, Shankru Guggari, Akshay R. Shanbhag","doi":"10.1049/ccs2.12096","DOIUrl":"https://doi.org/10.1049/ccs2.12096","url":null,"abstract":"The artificial intelligence (AI) within the last decade has experienced a rapid development and has attained power to simulate human‐thinking in various situations. When the deep neural networks (DNNs) are trained with huge dataset and high computational resources it can bring out great outcomes. But the learning process of DNN is very much complicated and time‐consuming. In various circumstances, where there is a data‐scarcity, the algorithms are not capable of learning tasks at a faster rate and perform nearer to that of human intelligence. With advancements in deep meta‐learning in several research studies, this problem has been dealt. Meta‐learning has outspread range of applications where the meta‐data (data about data) of the either tasks, data or the models which were previously trained can be employed to optimise the learning. So in order to get an insight of all existing meta‐learning approaches for DNN model optimisation, the authors performed survey introducing different meta‐learning techniques and also the current optimisation‐based approaches, their merits and open challenges. In this research, the Reptile meta‐learning algorithm was chosen for the experiment. As Reptile uses first‐order derivatives during optimisation process, hence making it feasible to solve optimisation problems. The authors achieved a 5% increase in accuracy with the proposed version of Reptile meta‐learning algorithm.","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"34 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138997706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although Dynamic Movement Primitives (DMP) is an effective tool for robotic arm trajectory generalisation, the application of DMP in the 3C (Computer, Communication, Consumer Electronics) industry still faces challenges such as low precision and high-time consumption. To address this problem, we propose a novel Cauchy DMP framework. The main improvements and advantages of Cauchy DMP, compared to the original DMP, are (1) since the Cauchy distribution has a simpler model and wider shape, using the Cauchy distribution instead of the Gaussian distribution in the original DMP reduces the complexity of the algorithm and saves time. (2) Singular Value Decomposition (SVD) can effectively model the error. To reduce the interference of the rounding and human error on the trajectory, SVD can be used to obtain the weight of each basis function. The proposed Cauchy DMP framework combines the above two points and is validated on a real UR5 robotic arm. The results show that Cauchy DMP retains the learnability of the original DMP and has the advantages of short time consumption and low error rate.
{"title":"Cauchy DMP: Improving 3C industrial assembly quality with the Cauchy kernel and singular value decomposition","authors":"Meng Liu, Wenbo Zhu, Lufeng Luo, Qinghua Lu, Weichang Yeh, Yunzhi Zhang","doi":"10.1049/ccs2.12097","DOIUrl":"https://doi.org/10.1049/ccs2.12097","url":null,"abstract":"<p>Although <b>D</b>ynamic <b>M</b>ovement <b>P</b>rimitives (DMP) is an effective tool for robotic arm trajectory generalisation, the application of DMP in the 3C (Computer, Communication, Consumer Electronics) industry still faces challenges such as low precision and high-time consumption. To address this problem, we propose a novel Cauchy DMP framework. The main improvements and advantages of Cauchy DMP, compared to the original DMP, are (1) since the Cauchy distribution has a simpler model and wider shape, using the Cauchy distribution instead of the Gaussian distribution in the original DMP reduces the complexity of the algorithm and saves time. (2) <b>S</b>ingular <b>V</b>alue <b>D</b>ecomposition (SVD) can effectively model the error. To reduce the interference of the rounding and human error on the trajectory, SVD can be used to obtain the weight of each basis function. The proposed Cauchy DMP framework combines the above two points and is validated on a real UR5 robotic arm. The results show that Cauchy DMP retains the learnability of the original DMP and has the advantages of short time consumption and low error rate.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"5 4","pages":"288-299"},"PeriodicalIF":0.0,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12097","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138634158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingchun Zheng, Shubo Li, Peihao Zhu, Wenpeng Ma, Yanlu Wang
In this study, to address the issues of sluggish convergence and poor learning efficiency at the initial stages of training, the authors improve and optimise the Deep Deterministic Policy Gradient (DDPG) algorithm. First, inspired by the Artificial Potential Field method, the selection strategy of DDPG has been improved to accelerate the convergence speed during the early stages of training and reduce the time it takes for the mobile robot to reach the target point. Then, optimising the neural network structure of the DDPG algorithm based on the Long Short-Term Memory accelerates the algorithm's convergence speed in complex dynamic scenes. Static and dynamic scene simulation experiments of mobile robots are carried out in ROS. Test findings demonstrate that the Artificial Potential Field method-Long Short Term Memory Deep Deterministic Policy Gradient (APF-LSTM DDPG) algorithm converges significantly faster in complex dynamic scenes. The success rate is improved by 7.3% and 3.6% in contrast to the DDPG and LSTM-DDPG algorithms. Finally, the usefulness of the method provided in this study is similarly demonstrated in real situations using real mobile robot platforms, laying the foundation for the path planning of mobile robots in complex changing conditions.
{"title":"A path planning algorithm fusion of obstacle avoidance and memory functions","authors":"Qingchun Zheng, Shubo Li, Peihao Zhu, Wenpeng Ma, Yanlu Wang","doi":"10.1049/ccs2.12098","DOIUrl":"10.1049/ccs2.12098","url":null,"abstract":"<p>In this study, to address the issues of sluggish convergence and poor learning efficiency at the initial stages of training, the authors improve and optimise the Deep Deterministic Policy Gradient (DDPG) algorithm. First, inspired by the Artificial Potential Field method, the selection strategy of DDPG has been improved to accelerate the convergence speed during the early stages of training and reduce the time it takes for the mobile robot to reach the target point. Then, optimising the neural network structure of the DDPG algorithm based on the Long Short-Term Memory accelerates the algorithm's convergence speed in complex dynamic scenes. Static and dynamic scene simulation experiments of mobile robots are carried out in ROS. Test findings demonstrate that the Artificial Potential Field method-Long Short Term Memory Deep Deterministic Policy Gradient (APF-LSTM DDPG) algorithm converges significantly faster in complex dynamic scenes. The success rate is improved by 7.3% and 3.6% in contrast to the DDPG and LSTM-DDPG algorithms. Finally, the usefulness of the method provided in this study is similarly demonstrated in real situations using real mobile robot platforms, laying the foundation for the path planning of mobile robots in complex changing conditions.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"5 4","pages":"300-313"},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138588800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashfia Jannat Keya, Sayefa Arafah Arpona, Muhammad Mohsin Kabir, Muhammad Firoz Mridha
The online recommendation system has benefited the traditional restaurant business economically. However, finding the best restaurant during rush time and visiting new places is tough. This objective is addressed through a restaurant recommendation approach, which impacts the human decision-making method. With the help of collaborative filtering, some user-based recommendation systems were designed to generate the best recommendation based on user choices. Thus, a user preferences-based method is presented using A Lite Bidirectional Encoder Representations from Transformers and Simple Recurrent Unit to suggest restaurants based on user preferences. Here, a publicly available dataset from Kaggle called Kzomato is used with 9552 samples and 21 features. And the system obtained an F1-score, precision, and recall of 86%, which will save time and provide the best recommendation based on user preferences easily.
{"title":"Recurrent ALBERT for recommendation: A hybrid architecture for accurate and lightweight restaurant recommendations","authors":"Ashfia Jannat Keya, Sayefa Arafah Arpona, Muhammad Mohsin Kabir, Muhammad Firoz Mridha","doi":"10.1049/ccs2.12090","DOIUrl":"10.1049/ccs2.12090","url":null,"abstract":"<p>The online recommendation system has benefited the traditional restaurant business economically. However, finding the best restaurant during rush time and visiting new places is tough. This objective is addressed through a restaurant recommendation approach, which impacts the human decision-making method. With the help of collaborative filtering, some user-based recommendation systems were designed to generate the best recommendation based on user choices. Thus, a user preferences-based method is presented using A Lite Bidirectional Encoder Representations from Transformers and Simple Recurrent Unit to suggest restaurants based on user preferences. Here, a publicly available dataset from Kaggle called Kzomato is used with 9552 samples and 21 features. And the system obtained an F1-score, precision, and recall of 86%, which will save time and provide the best recommendation based on user preferences easily.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"5 4","pages":"265-279"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An improved method for recognising clouds on the ground map is proposed incorporating the DeepLabV3+ model to solve three issues. Firstly, an image preprocessing module is developed to enrich image quality, particularly at night, as clouds can appear to be too blurry to distinguish. Secondly, the CBAM attention mechanism is applied to safeguard texture and boundary information, ensuring the depiction of cirrus edges is not lost. Finally, the feature extraction network can be optimised to enhance the model and decrease its computational complexity. In comparison to the original model, the accuracy of the proposed method increased by 10.89%, resulting in an overall accuracy of 94.18%. Furthermore, the MIoU has improved from 66.02% to 79.31%. The number of parameters was reduced by 51.45% to 13.4 M. Of the various cloud types, the improvement in cirrus is particularly striking, with the MIoU increasing from 1.78% to 56.01%.
{"title":"Ground-based cloud recognition method based on an improved DeepLabV3+ model","authors":"Yue Liang, Quanbo Ge","doi":"10.1049/ccs2.12091","DOIUrl":"10.1049/ccs2.12091","url":null,"abstract":"<p>An improved method for recognising clouds on the ground map is proposed incorporating the DeepLabV3+ model to solve three issues. Firstly, an image preprocessing module is developed to enrich image quality, particularly at night, as clouds can appear to be too blurry to distinguish. Secondly, the CBAM attention mechanism is applied to safeguard texture and boundary information, ensuring the depiction of cirrus edges is not lost. Finally, the feature extraction network can be optimised to enhance the model and decrease its computational complexity. In comparison to the original model, the accuracy of the proposed method increased by 10.89%, resulting in an overall accuracy of 94.18%. Furthermore, the MIoU has improved from 66.02% to 79.31%. The number of parameters was reduced by 51.45% to 13.4 M. Of the various cloud types, the improvement in cirrus is particularly striking, with the MIoU increasing from 1.78% to 56.01%.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"5 4","pages":"280-287"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136311907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IT services can be requested via cloud computing, a model based on services as well as the Internet. It includes all computer systems resources from hardware components to software platforms and software applications in a distributed environment. Scheduling is a key step in processing tasks using remote resources. Serious issues have been brought forward, including the ineffective use of resources and task execution failure. The concurrent provision of fault tolerance and resource optimisation is achallenging task. In the context of cloud computing, this research offers a brand-new job scheduling and fault-tolerant system. Tasks submitted by users are taken as an input for the proposed method. Several virtual machines (VM) are initially arranged for scheduling work and execution process. Initially, Horse Herd Optimisation is employed here to allocate the job based on key factors such as deadline and user budget. Once the jobs are assigned to each VM, then each job's deadline is confirmed and transferred to VM which has sufficient capacity. Here, the Reptile Search Optimisation technique is applied to identify the VM error. Any VM that does not have enough capacity is the one that has a problem. When a fault is found, a fault-tolerant process is instantly started. A replication-based fault-tolerant mechanism is used in this manuscript. The proposed approach is tested with several metrics which attains better performance like 80 s response time, turnaround time of 32 s, 17% resource utilisation and a success rate of 92%. Thus the designed model is the best choice for fault-tolerant aware task scheduling.
{"title":"An effective fault tolerance aware scheduling using hybrid horse herd optimisation-reptile search optimisation approach for a cloud computing environment","authors":"Manoj Kumar Malik, Hitesh Joshi, Abhishek Swaroop","doi":"10.1049/ccs2.12094","DOIUrl":"https://doi.org/10.1049/ccs2.12094","url":null,"abstract":"<p>IT services can be requested via cloud computing, a model based on services as well as the Internet. It includes all computer systems resources from hardware components to software platforms and software applications in a distributed environment. Scheduling is a key step in processing tasks using remote resources. Serious issues have been brought forward, including the ineffective use of resources and task execution failure. The concurrent provision of fault tolerance and resource optimisation is achallenging task. In the context of cloud computing, this research offers a brand-new job scheduling and fault-tolerant system. Tasks submitted by users are taken as an input for the proposed method. Several virtual machines (VM) are initially arranged for scheduling work and execution process. Initially, Horse Herd Optimisation is employed here to allocate the job based on key factors such as deadline and user budget. Once the jobs are assigned to each VM, then each job's deadline is confirmed and transferred to VM which has sufficient capacity. Here, the Reptile Search Optimisation technique is applied to identify the VM error. Any VM that does not have enough capacity is the one that has a problem. When a fault is found, a fault-tolerant process is instantly started. A replication-based fault-tolerant mechanism is used in this manuscript. The proposed approach is tested with several metrics which attains better performance like 80 s response time, turnaround time of 32 s, 17% resource utilisation and a success rate of 92%. Thus the designed model is the best choice for fault-tolerant aware task scheduling.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"5 3","pages":"231-242"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50148197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the improvement in power demand usage, the system causes more stress. Suitable placement of FACTS is introduced to improve power flows, stability, and power system security. An advanced optimal method has been introduced to resolve optimal power flow under various conditions. Five varied FACTS devices were positioned inside the power system to improve system safety at the least cost. Selecting the suitable location and size of FACTS device enabling high security and less cost was proposed using RSA. The objective functions were mitigated based on the RSA's inspiration to improve system security. The placement of the FACTS compensator was based on objective functions like LOSI, voltage deviation, real power loss, investment cost, sensitivity index, fuel costs, and constraints. The proposed model was validated under three conditions, namely generator outage, line outage, and both outage in IEEE 118 and IEEE 30 bus-systems. In the IEEE 30 bus system, TCSC provides better security of 1.4 severity at normal conditions and 1.3 severity in contingency conditions. In the IEEE 118 bus system, UPFC has less severity of 2.4 at normal conditions, and STATCOM has the least severity of 3 at contingency conditions. The proposed model provides enhanced security in all circumstances and reduces overall costs.
{"title":"Localisation of facts compensator using reptile search algorithm for enhancing power system security under multi-contingency conditions","authors":"Sumit Ramswami Punam, Sunil Kumar","doi":"10.1049/ccs2.12089","DOIUrl":"https://doi.org/10.1049/ccs2.12089","url":null,"abstract":"<p>Due to the improvement in power demand usage, the system causes more stress. Suitable placement of FACTS is introduced to improve power flows, stability, and power system security. An advanced optimal method has been introduced to resolve optimal power flow under various conditions. Five varied FACTS devices were positioned inside the power system to improve system safety at the least cost. Selecting the suitable location and size of FACTS device enabling high security and less cost was proposed using RSA. The objective functions were mitigated based on the RSA's inspiration to improve system security. The placement of the FACTS compensator was based on objective functions like LOSI, voltage deviation, real power loss, investment cost, sensitivity index, fuel costs, and constraints. The proposed model was validated under three conditions, namely generator outage, line outage, and both outage in IEEE 118 and IEEE 30 bus-systems. In the IEEE 30 bus system, TCSC provides better security of 1.4 severity at normal conditions and 1.3 severity in contingency conditions. In the IEEE 118 bus system, UPFC has less severity of 2.4 at normal conditions, and STATCOM has the least severity of 3 at contingency conditions. The proposed model provides enhanced security in all circumstances and reduces overall costs.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"5 3","pages":"195-217"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50134796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}