Pub Date : 2024-03-15DOI: 10.1186/s42774-023-00166-w
Zi-Xiang Tong, Ming-Jia Li, Yanxia Du, Xianxu Yuan
Lattice Boltzmann (LB) methods with reactive boundary conditions are widely used in pore-scale simulations of dissolution and ablation processes. The staircase approximation of curved boundary is often employed because of its simplicity in handling solid structure changes. In this work, the mass transfer of two typical LB reactive boundary schemes are analyzed for the staircase boundary. The Type I boundary scheme is based on relations of local distribution functions and a wet-node boundary mesh. The Type II boundary scheme adopts the half-way bounce-back scheme. Boundary concentrations are determined by finite difference, and a link-wise boundary mesh is used. The analyses demonstrate that for straight boundaries, both the boundary schemes have accurate mass transfer rates, which means the mass transfer calculated by exchanges of distribution functions is the same as that calculated by reaction rates. For curved boundaries with staircase approximation, including interfacial normal directions in the Type I boundary scheme can provide accurate mass transfer for inclined straight boundaries. However, if the staircase boundary geometry is used directly without normal directions, the reaction rate will be overestimated. One-dimensional and two-dimensional reaction-diffusion processes with dissolution are simulated to validate the analyses. Both the boundary schemes work well for one-dimensional simulations. For two-dimensional simulations, the Type II boundary scheme significantly overestimates the reaction rate, and stronger artificial anisotropic effects are observed. The Type I boundary scheme with normal directions has better performance, but error still exists.
具有反应边界条件的晶格玻尔兹曼(LB)方法广泛应用于溶解和烧蚀过程的孔隙尺度模拟。由于曲线边界的阶梯近似在处理固体结构变化时比较简单,因此经常被采用。本文分析了两种典型的阶梯边界 LB 反应边界方案的传质情况。I 型边界方案基于局部分布函数关系和湿节点边界网格。第二类边界方案采用半程反弹方案。边界浓度由有限差分确定,并采用链接式边界网格。分析表明,对于直线边界,两种边界方案都有精确的传质速率,即通过交换分布函数计算的传质与通过反应速率计算的传质相同。对于采用阶梯近似的弯曲边界,在 I 型边界方案中包含界面法线方向可以为倾斜的直线边界提供精确的传质。但是,如果直接使用阶梯边界几何形状而不包含法线方向,则会高估反应速率。为了验证分析结果,我们模拟了一维和二维的反应-扩散过程。在一维模拟中,两种边界方案都运行良好。对于二维模拟,第二类边界方案明显高估了反应速率,而且观察到更强的人为各向异性效应。带有法线方向的 I 型边界方案性能更好,但误差仍然存在。
{"title":"Mass transfer analyses of reactive boundary schemes for lattice Boltzmann method with staircase approximation","authors":"Zi-Xiang Tong, Ming-Jia Li, Yanxia Du, Xianxu Yuan","doi":"10.1186/s42774-023-00166-w","DOIUrl":"https://doi.org/10.1186/s42774-023-00166-w","url":null,"abstract":"Lattice Boltzmann (LB) methods with reactive boundary conditions are widely used in pore-scale simulations of dissolution and ablation processes. The staircase approximation of curved boundary is often employed because of its simplicity in handling solid structure changes. In this work, the mass transfer of two typical LB reactive boundary schemes are analyzed for the staircase boundary. The Type I boundary scheme is based on relations of local distribution functions and a wet-node boundary mesh. The Type II boundary scheme adopts the half-way bounce-back scheme. Boundary concentrations are determined by finite difference, and a link-wise boundary mesh is used. The analyses demonstrate that for straight boundaries, both the boundary schemes have accurate mass transfer rates, which means the mass transfer calculated by exchanges of distribution functions is the same as that calculated by reaction rates. For curved boundaries with staircase approximation, including interfacial normal directions in the Type I boundary scheme can provide accurate mass transfer for inclined straight boundaries. However, if the staircase boundary geometry is used directly without normal directions, the reaction rate will be overestimated. One-dimensional and two-dimensional reaction-diffusion processes with dissolution are simulated to validate the analyses. Both the boundary schemes work well for one-dimensional simulations. For two-dimensional simulations, the Type II boundary scheme significantly overestimates the reaction rate, and stronger artificial anisotropic effects are observed. The Type I boundary scheme with normal directions has better performance, but error still exists.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"24 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1186/s42774-023-00171-z
Victor L. Mironov, Sergey V. Mironov
We present a theoretical model of plane turbulent flows based on the previously proposed equations, which take into account both the longitudinal motion and the vortex tube rotation. Using the simple model of eddy viscosity, we obtain the analytical expressions for the mean velocity profiles of stationary turbulent flows. In particular, we consider the near-wall flow over a flat plate in a wind tunnel as well as Couette and Poiseuille flows in rectangular channels. In all these cases, the calculated velocity profiles are in good agreement with experimental data and results of direct numerical simulations.
{"title":"Vortex model of plane turbulent air flows in channels","authors":"Victor L. Mironov, Sergey V. Mironov","doi":"10.1186/s42774-023-00171-z","DOIUrl":"https://doi.org/10.1186/s42774-023-00171-z","url":null,"abstract":"We present a theoretical model of plane turbulent flows based on the previously proposed equations, which take into account both the longitudinal motion and the vortex tube rotation. Using the simple model of eddy viscosity, we obtain the analytical expressions for the mean velocity profiles of stationary turbulent flows. In particular, we consider the near-wall flow over a flat plate in a wind tunnel as well as Couette and Poiseuille flows in rectangular channels. In all these cases, the calculated velocity profiles are in good agreement with experimental data and results of direct numerical simulations.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"16 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1186/s42774-023-00163-z
Narges Golmirzaee, David H. Wood
This paper investigates a specific case of one of the most popular fluid dynamic simulations, the incompressible flow around an airfoil (NACA 0012 here) at a high Reynolds number ( $$6 times 10^6$$ ). OpenFOAM software was used to study the effect of domain size and four common choices of boundary conditions on airfoil lift, drag, surface friction, and pressure. We also examine the relation between boundary conditions and the velocity, pressure, and vorticity distributions throughout the domain. In addition to the common boundary conditions, we implement the “point vortex” boundary condition that was introduced many years ago but is now rarely used. We also applied the point vortex condition for the outlet pressure instead of using the traditional Neumann condition. With the airfoil generating significant lift at incidence angles of $$5^circ , 10^circ$$ , and $$14^circ$$ , we confirm a previous finding that the boundary conditions combine with domain size to produce an induced (pressure) drag. The change in the pressure drag with domain size is significant for the commonly-used boundary conditions but is much smaller for the point vortex alternative. The point vortex boundary condition increases the execution time, but this is more than offset by the reduction in domain size needed to achieve a specified accuracy in the lift and drag. This study also estimates the error in total drag and lift due to domain size and shows it can be almost eliminated using the point vortex boundary condition. We also used the impulse form of the momentum equations to study the relation between drag and lift and spurious vorticity, which is generated as a result of using non-exact boundary conditions. These equations reveal that the spurious vorticity throughout the domain is associated with cancelling circulation around the domain boundaries.
{"title":"Some effects of domain size and boundary conditions on the accuracy of airfoil simulations","authors":"Narges Golmirzaee, David H. Wood","doi":"10.1186/s42774-023-00163-z","DOIUrl":"https://doi.org/10.1186/s42774-023-00163-z","url":null,"abstract":"This paper investigates a specific case of one of the most popular fluid dynamic simulations, the incompressible flow around an airfoil (NACA 0012 here) at a high Reynolds number ( $$6 times 10^6$$ ). OpenFOAM software was used to study the effect of domain size and four common choices of boundary conditions on airfoil lift, drag, surface friction, and pressure. We also examine the relation between boundary conditions and the velocity, pressure, and vorticity distributions throughout the domain. In addition to the common boundary conditions, we implement the “point vortex” boundary condition that was introduced many years ago but is now rarely used. We also applied the point vortex condition for the outlet pressure instead of using the traditional Neumann condition. With the airfoil generating significant lift at incidence angles of $$5^circ , 10^circ$$ , and $$14^circ$$ , we confirm a previous finding that the boundary conditions combine with domain size to produce an induced (pressure) drag. The change in the pressure drag with domain size is significant for the commonly-used boundary conditions but is much smaller for the point vortex alternative. The point vortex boundary condition increases the execution time, but this is more than offset by the reduction in domain size needed to achieve a specified accuracy in the lift and drag. This study also estimates the error in total drag and lift due to domain size and shows it can be almost eliminated using the point vortex boundary condition. We also used the impulse form of the momentum equations to study the relation between drag and lift and spurious vorticity, which is generated as a result of using non-exact boundary conditions. These equations reveal that the spurious vorticity throughout the domain is associated with cancelling circulation around the domain boundaries.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"101 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1186/s42774-023-00167-9
Jian Qin, Haichuan Yu, Jie Wu
Shock wave/boundary layer interaction (SWBLI) continues to pose a significant challenge in the field of aerospace engineering. This paper aims to address this issue by proposing a novel approach for predicting aerodynamic coefficients and heat transfer in viscous supersonic and hypersonic flows using a high-order flux reconstruction technique. Currently, finite volume methods are extensively employed for the computation of skin aerodynamic coefficients and heat transfer. Nevertheless, these numerical methods exhibit considerable susceptibility to a range of factors, including the inviscid flux function and the computational mesh. The application of high-order flux reconstruction techniques offers promising potential in alleviating these challenges. In contrast to other high-order methods, the flux reconstruction is combined with the lattice Boltzmann flux solver in this study. The current method evaluates the common inviscid flux at the cell interface by locally reconstructing the lattice Boltzmann equation solution from macroscopic flow variables at solution points. Consequently, this framework performs a positivity-preserving, entropy-based adaptive filtering method for shock capturing. The present approach is validated by simulating the double Mach reflection, and then simulating some typical viscous problems. The results demonstrate that the current method accurately predicts aerodynamic coefficients and heat transfer, providing valuable insights into the application of high-order methods for shock wave/boundary layer interaction.
{"title":"On the investigation of shock wave/boundary layer interaction with a high-order scheme based on lattice Boltzmann flux solver","authors":"Jian Qin, Haichuan Yu, Jie Wu","doi":"10.1186/s42774-023-00167-9","DOIUrl":"https://doi.org/10.1186/s42774-023-00167-9","url":null,"abstract":"Shock wave/boundary layer interaction (SWBLI) continues to pose a significant challenge in the field of aerospace engineering. This paper aims to address this issue by proposing a novel approach for predicting aerodynamic coefficients and heat transfer in viscous supersonic and hypersonic flows using a high-order flux reconstruction technique. Currently, finite volume methods are extensively employed for the computation of skin aerodynamic coefficients and heat transfer. Nevertheless, these numerical methods exhibit considerable susceptibility to a range of factors, including the inviscid flux function and the computational mesh. The application of high-order flux reconstruction techniques offers promising potential in alleviating these challenges. In contrast to other high-order methods, the flux reconstruction is combined with the lattice Boltzmann flux solver in this study. The current method evaluates the common inviscid flux at the cell interface by locally reconstructing the lattice Boltzmann equation solution from macroscopic flow variables at solution points. Consequently, this framework performs a positivity-preserving, entropy-based adaptive filtering method for shock capturing. The present approach is validated by simulating the double Mach reflection, and then simulating some typical viscous problems. The results demonstrate that the current method accurately predicts aerodynamic coefficients and heat transfer, providing valuable insights into the application of high-order methods for shock wave/boundary layer interaction.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"20 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-19DOI: 10.1186/s42774-023-00169-7
Zhaowen Duan, Z. J. Wang
High-order methods have demonstrated orders of magnitude reduction in computational cost for large eddy simulation (LES) over low-order methods in the past decade. Most such simulations are wall-resolved implicit LES (ILES) without an explicit sub-grid scale (SGS) model. The use of high-order ILES for severely under-resolved LES such as wall-modeled LES (WMLES) often runs into robustness and accuracy issues due to the low dissipation embedded in these methods. In the present study, we investigate the performance of several popular SGS models, the static Smagorinsky model, the wall-adapting local eddy-viscosity (WALE) model and the Vreman model, to improve the robustness and accuracy of under-resolved LES using high-order methods. The models are implemented in the high-order unstructured grid LES solver called hpMusic based on the discontinuous flux reconstruction method. The length scales in these SGS models are calibrated using the direct numerical simulation (DNS) database for the turbulent channel flow problem. The Vreman model has been found to produce the most accurate and consistent results with a proper choice of the length scale for WMLES.
在过去十年中,高阶方法在大涡度模拟(LES)中的计算成本比低阶方法降低了几个数量级。大多数此类模拟都是壁面分辨隐式 LES(ILES),没有显式子网格尺度(SGS)模型。在壁面建模 LES(WMLES)等严重欠分辨 LES 中使用高阶 ILES 时,由于这些方法中嵌入了低耗散,经常会遇到鲁棒性和精度问题。在本研究中,我们研究了几种流行的 SGS 模型的性能,包括静态 Smagorinsky 模型、壁面适配局部涡粘度(WALE)模型和 Vreman 模型,以提高使用高阶方法的欠分辨 LES 的鲁棒性和精度。这些模型是在基于非连续通量重建方法的高阶非结构网格 LES 求解器 hpMusic 中实现的。这些 SGS 模型的长度尺度是利用直接数值模拟(DNS)数据库对湍流通道流问题进行校准的。通过对 WMLES 长度尺度的适当选择,发现 Vreman 模型产生的结果最为准确和一致。
{"title":"Calibrating sub-grid scale models for high-order wall-modeled large eddy simulation","authors":"Zhaowen Duan, Z. J. Wang","doi":"10.1186/s42774-023-00169-7","DOIUrl":"https://doi.org/10.1186/s42774-023-00169-7","url":null,"abstract":"High-order methods have demonstrated orders of magnitude reduction in computational cost for large eddy simulation (LES) over low-order methods in the past decade. Most such simulations are wall-resolved implicit LES (ILES) without an explicit sub-grid scale (SGS) model. The use of high-order ILES for severely under-resolved LES such as wall-modeled LES (WMLES) often runs into robustness and accuracy issues due to the low dissipation embedded in these methods. In the present study, we investigate the performance of several popular SGS models, the static Smagorinsky model, the wall-adapting local eddy-viscosity (WALE) model and the Vreman model, to improve the robustness and accuracy of under-resolved LES using high-order methods. The models are implemented in the high-order unstructured grid LES solver called hpMusic based on the discontinuous flux reconstruction method. The length scales in these SGS models are calibrated using the direct numerical simulation (DNS) database for the turbulent channel flow problem. The Vreman model has been found to produce the most accurate and consistent results with a proper choice of the length scale for WMLES.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"140 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-18DOI: 10.1186/s42774-023-00164-y
Yi Zhang, Jialing Le, Ye Tian
The combustion performance of a scramjet engine is based on a two-phase mixing process of its fuel. To elucidate the mechanism of jet atomization in supersonic airflows, a numerical simulation of liquid jet atomization in a supersonic crossflow is carried out. The Euler method is used to calculate the gas phase, while the Lagrangian particle tracking method is used to calculate the liquid phase. The Reitz wave model is used to simulate the first breakup of the liquid jet, and the Kelvin-Helmholtz/Rayleigh-Taylor hybrid breakup model is used to simulate the second breakup of the droplets. The influence of the liquid/gas momentum flux ratio and the diameter of the jet on the atomization characteristics is discussed. The results show that the penetration depth increases with increasing nozzle diameter and liquid/gas momentum flux ratio. A jet with a larger liquid/gas momentum flux ratio breaks faster, and its Sauter mean diameter is smaller. The Sauter mean diameter of a droplet decreases with decreasing nozzle diameter. At 30 mm downstream of the nozzle, all jets are basically atomized, and the SMD of the jet is around 10 μm. The nozzle diameter has a greater influence on the jet penetration depth than does the liquid/gas momentum flux ratio.
{"title":"Study on atomization characteristics of a kerosene jet in a supersonic crossflow","authors":"Yi Zhang, Jialing Le, Ye Tian","doi":"10.1186/s42774-023-00164-y","DOIUrl":"https://doi.org/10.1186/s42774-023-00164-y","url":null,"abstract":"The combustion performance of a scramjet engine is based on a two-phase mixing process of its fuel. To elucidate the mechanism of jet atomization in supersonic airflows, a numerical simulation of liquid jet atomization in a supersonic crossflow is carried out. The Euler method is used to calculate the gas phase, while the Lagrangian particle tracking method is used to calculate the liquid phase. The Reitz wave model is used to simulate the first breakup of the liquid jet, and the Kelvin-Helmholtz/Rayleigh-Taylor hybrid breakup model is used to simulate the second breakup of the droplets. The influence of the liquid/gas momentum flux ratio and the diameter of the jet on the atomization characteristics is discussed. The results show that the penetration depth increases with increasing nozzle diameter and liquid/gas momentum flux ratio. A jet with a larger liquid/gas momentum flux ratio breaks faster, and its Sauter mean diameter is smaller. The Sauter mean diameter of a droplet decreases with decreasing nozzle diameter. At 30 mm downstream of the nozzle, all jets are basically atomized, and the SMD of the jet is around 10 μm. The nozzle diameter has a greater influence on the jet penetration depth than does the liquid/gas momentum flux ratio.\u0000","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"16 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139902381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-04DOI: 10.1186/s42774-023-00162-0
Yang Zhang, Tianmei Pu, He Jia, Shiqing Wu, Chunhua Zhou
In this work, the sharp-interface immersed boundary (IB) method proposed by Mittal et al. (J Comput Phys 227(10):4825–4852, 2008) is extended to fluid-structure-interaction (FSI) simulation of parachute inflation by utilizing several open-source tools. The method employs a Cartesian-grid ghost-cell methodology to accurately represent the immersed boundary, and it is suitable for solving moving-boundary flows with arbitrarily complex geometries. The finite-element code CalculiX is employed to solve the structural dynamics of the parachute system. The IB flow solver is coupled with CalculiX in a minimally-invasive manner using the multi-physics coupling library preCICE. The implicit fluid-structure coupling together with the Aitken adaptive under-relaxation scheme is considered to improve the numerical accuracy and stability. The developed approach is validated by a benchmark FSI case. Numerical experiments on the inflation process of several typical parachutes are further conducted. The breathing process, flow structure, canopy displacement and drag coefficient are analyzed to demonstrate the applicability of the present approach for simulating parachute inflation.
{"title":"Extension of a sharp-interface immersed-boundary method for simulating parachute inflation","authors":"Yang Zhang, Tianmei Pu, He Jia, Shiqing Wu, Chunhua Zhou","doi":"10.1186/s42774-023-00162-0","DOIUrl":"https://doi.org/10.1186/s42774-023-00162-0","url":null,"abstract":"In this work, the sharp-interface immersed boundary (IB) method proposed by Mittal et al. (J Comput Phys 227(10):4825–4852, 2008) is extended to fluid-structure-interaction (FSI) simulation of parachute inflation by utilizing several open-source tools. The method employs a Cartesian-grid ghost-cell methodology to accurately represent the immersed boundary, and it is suitable for solving moving-boundary flows with arbitrarily complex geometries. The finite-element code CalculiX is employed to solve the structural dynamics of the parachute system. The IB flow solver is coupled with CalculiX in a minimally-invasive manner using the multi-physics coupling library preCICE. The implicit fluid-structure coupling together with the Aitken adaptive under-relaxation scheme is considered to improve the numerical accuracy and stability. The developed approach is validated by a benchmark FSI case. Numerical experiments on the inflation process of several typical parachutes are further conducted. The breathing process, flow structure, canopy displacement and drag coefficient are analyzed to demonstrate the applicability of the present approach for simulating parachute inflation.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-25DOI: 10.1186/s42774-023-00165-x
Yaming Chen, Xiaogang Deng
Weighted compact nonlinear schemes (WCNS) are a family of nonlinear shock capturing schemes that are suitable for solving problems with discontinuous solutions. The schemes are based on grids staggered by flux points and solution points, resulting in algorithms with the nonlinear interpolation step independent of the difference step. Thus, only linear difference operators are needed, such that geometric conservation law can be preserved easily, resulting in the preservation of freestream condition. In recent years, these schemes have attracted a lot of attention in the community of computational fluid dynamics. This paper intends to give a brief review of the basic algorithms of these schemes and present some related recent developments.
{"title":"WCNS schemes and some recent developments","authors":"Yaming Chen, Xiaogang Deng","doi":"10.1186/s42774-023-00165-x","DOIUrl":"https://doi.org/10.1186/s42774-023-00165-x","url":null,"abstract":"Weighted compact nonlinear schemes (WCNS) are a family of nonlinear shock capturing schemes that are suitable for solving problems with discontinuous solutions. The schemes are based on grids staggered by flux points and solution points, resulting in algorithms with the nonlinear interpolation step independent of the difference step. Thus, only linear difference operators are needed, such that geometric conservation law can be preserved easily, resulting in the preservation of freestream condition. In recent years, these schemes have attracted a lot of attention in the community of computational fluid dynamics. This paper intends to give a brief review of the basic algorithms of these schemes and present some related recent developments.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"11 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139561032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Existing studies about wind pressure on agricultural greenhouse buildings concentrate on the mean wind pressure while ignoring the systematic research on fluctuating wind pressure characteristics and the influence of roof shape on the wind pressure characteristics, which are closely associated with the wind-induced damage mechanism. In this study, two typical agricultural greenhouse buildings on tropical islands are selected as prototypes to conduct pressure measurement experiments in the wind tunnel. Based on the wind pressure time series for the two greenhouses, the mean and fluctuating wind pressure distribution pattern and the localized high-pressure generation mechanism are analyzed. Then, the shape coefficient of the two greenhouses is compared in depth to the standards from four countries. Besides, wind pressure non-Gaussian determination criteria for agricultural greenhouse buildings considering the roof shape and wind directions are proposed. Lastly, the differences in wind pressure spectra on the roofs and walls of the two greenhouses are summarized. The results indicate the roof shape has a significant influence on the wind pressure characteristics. Compared with the pitched roof, the vaulted roof will increase the suction effect on the windward front zone and the middle area, mitigate the suction impact on the leeward roof, and weaken the wind pressure non-Gaussian characteristics. The experimental shape coefficient of the pitched-roof greenhouse is basically consistent with the standard from the U.S., while that of the vaulted-roof greenhouse has some deviation from the existing standards. The results provide a theoretical basis for the wind-resistant design of agricultural greenhouse buildings on tropical islands.
{"title":"Analysis of wind pressure characteristics of typical agricultural greenhouse buildings on tropical islands","authors":"Bin Huang, Jinke Liu, Zhengnong Li, Wenxiang Wang, Xiangjun Wang, Xijie Liu, Tianyin Xiao","doi":"10.1186/s42774-023-00170-0","DOIUrl":"https://doi.org/10.1186/s42774-023-00170-0","url":null,"abstract":"Existing studies about wind pressure on agricultural greenhouse buildings concentrate on the mean wind pressure while ignoring the systematic research on fluctuating wind pressure characteristics and the influence of roof shape on the wind pressure characteristics, which are closely associated with the wind-induced damage mechanism. In this study, two typical agricultural greenhouse buildings on tropical islands are selected as prototypes to conduct pressure measurement experiments in the wind tunnel. Based on the wind pressure time series for the two greenhouses, the mean and fluctuating wind pressure distribution pattern and the localized high-pressure generation mechanism are analyzed. Then, the shape coefficient of the two greenhouses is compared in depth to the standards from four countries. Besides, wind pressure non-Gaussian determination criteria for agricultural greenhouse buildings considering the roof shape and wind directions are proposed. Lastly, the differences in wind pressure spectra on the roofs and walls of the two greenhouses are summarized. The results indicate the roof shape has a significant influence on the wind pressure characteristics. Compared with the pitched roof, the vaulted roof will increase the suction effect on the windward front zone and the middle area, mitigate the suction impact on the leeward roof, and weaken the wind pressure non-Gaussian characteristics. The experimental shape coefficient of the pitched-roof greenhouse is basically consistent with the standard from the U.S., while that of the vaulted-roof greenhouse has some deviation from the existing standards. The results provide a theoretical basis for the wind-resistant design of agricultural greenhouse buildings on tropical islands.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"49 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139397982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1186/s42774-023-00161-1
Hao Jiang, Weigang Yao, Min Xu
The Co-flow Jet (CFJ) technology holds significant promise for enhancing aerodynamic efficiency and furthering decarbonization in the evolving landscape of air transportation. The aim of this study is to empirically validate an optimized CFJ airfoil through low-speed wind tunnel experiments. The CFJ airfoil is structured in a tri-sectional design, consisting of one experimental segment and two stationary segments. A support rod penetrates the airfoil, fulfilling dual roles: it not only maintains the structural integrity of the overall model but also enables the direct measurement of aerodynamic forces on the test section of the CFJ airfoil within a two-dimensional wind tunnel. In parallel, the stationary segments are designed to effectively minimize the interference from the lateral tunnel walls. The experimental results are compared with numerical simulations, specifically focusing on aerodynamic parameters and flow field distribution. The findings reveal that the experimental framework employed is highly effective in characterizing the aerodynamic behavior of the CFJ airfoil, showing strong agreement with the simulation data.
{"title":"Experimental design for a novel co-flow jet airfoil","authors":"Hao Jiang, Weigang Yao, Min Xu","doi":"10.1186/s42774-023-00161-1","DOIUrl":"https://doi.org/10.1186/s42774-023-00161-1","url":null,"abstract":"The Co-flow Jet (CFJ) technology holds significant promise for enhancing aerodynamic efficiency and furthering decarbonization in the evolving landscape of air transportation. The aim of this study is to empirically validate an optimized CFJ airfoil through low-speed wind tunnel experiments. The CFJ airfoil is structured in a tri-sectional design, consisting of one experimental segment and two stationary segments. A support rod penetrates the airfoil, fulfilling dual roles: it not only maintains the structural integrity of the overall model but also enables the direct measurement of aerodynamic forces on the test section of the CFJ airfoil within a two-dimensional wind tunnel. In parallel, the stationary segments are designed to effectively minimize the interference from the lateral tunnel walls. The experimental results are compared with numerical simulations, specifically focusing on aerodynamic parameters and flow field distribution. The findings reveal that the experimental framework employed is highly effective in characterizing the aerodynamic behavior of the CFJ airfoil, showing strong agreement with the simulation data.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"47 5","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}