Pub Date : 2021-07-21DOI: 10.5772/INTECHOPEN.93787
N. Haq, S. Shakeel
Different organisms respond to the altered environmental conditions by different ways. Heat shock proteins’ (HSPs) production is one among the different defense mechanisms which defend the photosystem II and thylokoid membrane in plants. There are different types of HSPs based on their size, that is, high molecular weight (60–100 kDa) and low molecular weight heat shock proteins (15–30 kDa). Small HSPs are further classified based on their localization and role in different sub-cellular organelles. Cp-sHSPs are the chloroplast-specific small HSPs that protect the photosystem II and thylokoid membrane. A model to control the Cp-sHSPs in Chenopodium album has been put forward in this chapter. According to this model, Cp-sHSPs of Chenopodium album are created in cytoplasm and are moved toward chloroplast. The transit peptide is removed on reaching to the target sub-cellular organelle, that is, chloroplast and the premature Cp-sHSPs are converted into mature ones which have multiple roles under different abiotic stress conditions.
{"title":"HSPs under Abiotic Stresses","authors":"N. Haq, S. Shakeel","doi":"10.5772/INTECHOPEN.93787","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.93787","url":null,"abstract":"Different organisms respond to the altered environmental conditions by different ways. Heat shock proteins’ (HSPs) production is one among the different defense mechanisms which defend the photosystem II and thylokoid membrane in plants. There are different types of HSPs based on their size, that is, high molecular weight (60–100 kDa) and low molecular weight heat shock proteins (15–30 kDa). Small HSPs are further classified based on their localization and role in different sub-cellular organelles. Cp-sHSPs are the chloroplast-specific small HSPs that protect the photosystem II and thylokoid membrane. A model to control the Cp-sHSPs in Chenopodium album has been put forward in this chapter. According to this model, Cp-sHSPs of Chenopodium album are created in cytoplasm and are moved toward chloroplast. The transit peptide is removed on reaching to the target sub-cellular organelle, that is, chloroplast and the premature Cp-sHSPs are converted into mature ones which have multiple roles under different abiotic stress conditions.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125194283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-21DOI: 10.5772/intechopen.93367
S. Mathivanan
Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. Among abiotic stress, drought, salinity, high temperature, and cold are major adverse environmental factors that limit the crop production and productivity by inhibiting the genetic potential of the plant. So, it leads to complete change of morphological, physiological, biochemical, and molecular behavior of the plants and modifies regular metabolism of life, thereby adversely affecting plant productivity. Major effects of the drought, salinity, extreme temperatures, and cold stress are often interconnected and form similar cellular damage. To adopt plants with various abiotic stresses, plants can initiate a number of molecular, cellular, and physiological changes in its system. Sensors are molecules that perceive the initial stress signal from the outside of the plant system and initiate a signaling cascade to transmit the signal and activate nuclear transcription factors to induce the expression of specific sets of genes. Understanding this molecular and physiological basis of plant responses produced because of abiotic stress will help in molecular and modern breeding applications toward developing improved stress-tolerant crops. This review presents an overview and implications of physiological and molecular aspects of main abiotic stress, i.e., drought, heat, salt, and cold. Potential strategies to improve abiotic tolerance in crops are discussed.
{"title":"Abiotic Stress-Induced Molecular and Physiological Changes and Adaptive Mechanisms in Plants","authors":"S. Mathivanan","doi":"10.5772/intechopen.93367","DOIUrl":"https://doi.org/10.5772/intechopen.93367","url":null,"abstract":"Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. Among abiotic stress, drought, salinity, high temperature, and cold are major adverse environmental factors that limit the crop production and productivity by inhibiting the genetic potential of the plant. So, it leads to complete change of morphological, physiological, biochemical, and molecular behavior of the plants and modifies regular metabolism of life, thereby adversely affecting plant productivity. Major effects of the drought, salinity, extreme temperatures, and cold stress are often interconnected and form similar cellular damage. To adopt plants with various abiotic stresses, plants can initiate a number of molecular, cellular, and physiological changes in its system. Sensors are molecules that perceive the initial stress signal from the outside of the plant system and initiate a signaling cascade to transmit the signal and activate nuclear transcription factors to induce the expression of specific sets of genes. Understanding this molecular and physiological basis of plant responses produced because of abiotic stress will help in molecular and modern breeding applications toward developing improved stress-tolerant crops. This review presents an overview and implications of physiological and molecular aspects of main abiotic stress, i.e., drought, heat, salt, and cold. Potential strategies to improve abiotic tolerance in crops are discussed.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126545857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-21DOI: 10.5772/intechopen.93708
Xin He
Rapeseed (Brassica napus L.) is an important oil crop worldwide, responds to vernalization, and shows an excellent tolerance to cold stresses during vegetative stage. The winter-type and semi-winter-type rapeseed were typical winter biennial plants in Europe and China. In recent years, more and more early-maturing semi-winter rapeseed varieties were planted across China. Unfortunately, the early-maturing rapeseed varieties with low cold tolerance have higher risk of freeze injury in cold winter and spring. The molecular mechanisms for coping with different low-temperature stress conditions in rapeseed recently had gained more attention and development. The present review gives an insight into the responses of early-maturing B. napus to different low-temperature stresses (chilling, freezing, cold-acclimation, and vernalization), and the strategies to improve tolerance against low-temperature stresses are also discussed.
{"title":"An Insight into the Responses of Early-Maturing Brassica napus to Different Low-Temperature Stresses","authors":"Xin He","doi":"10.5772/intechopen.93708","DOIUrl":"https://doi.org/10.5772/intechopen.93708","url":null,"abstract":"Rapeseed (Brassica napus L.) is an important oil crop worldwide, responds to vernalization, and shows an excellent tolerance to cold stresses during vegetative stage. The winter-type and semi-winter-type rapeseed were typical winter biennial plants in Europe and China. In recent years, more and more early-maturing semi-winter rapeseed varieties were planted across China. Unfortunately, the early-maturing rapeseed varieties with low cold tolerance have higher risk of freeze injury in cold winter and spring. The molecular mechanisms for coping with different low-temperature stress conditions in rapeseed recently had gained more attention and development. The present review gives an insight into the responses of early-maturing B. napus to different low-temperature stresses (chilling, freezing, cold-acclimation, and vernalization), and the strategies to improve tolerance against low-temperature stresses are also discussed.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115737057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-18DOI: 10.5772/INTECHOPEN.94135
Malik Ghulam Asghar, Anam Bashir
The food demand is increasing hastily, that is inducing continuous pressure on agriculture sector and industries to fulfill rising dietary needs. To meet with increasing demand, the food production must be elevated up to 70% until the year 2050. On the other hand, changing climate is disturbing crop production around the World. Crops grown under field conditions are affected by more than one abiotic stress. It is continuous task and challenge for agronomists to make crops environment hardy to obtain maximum yield. It is considered that different agronomic managements, if done appropriately, could be beneficial for increasing crop production. The optimal provision of plant nutrients can assist the crops to fight in better way with environmental stress like drought; it can help them to continue their normal metabolism even under hostile abiotic circumstances. The regions that have reduced availability of water for crop production, a balanced nutrient management can assist crops to give adequate production. Some of nutrients have potential of not only maintaining plant metabolism but also to enhance the quality of product. This chapter highlights the protagonist of plant nutrients in alleviation of drought stress in field crops.
{"title":"Protagonist of Mineral Nutrients in Drought Stress Tolerance of Field Crops","authors":"Malik Ghulam Asghar, Anam Bashir","doi":"10.5772/INTECHOPEN.94135","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.94135","url":null,"abstract":"The food demand is increasing hastily, that is inducing continuous pressure on agriculture sector and industries to fulfill rising dietary needs. To meet with increasing demand, the food production must be elevated up to 70% until the year 2050. On the other hand, changing climate is disturbing crop production around the World. Crops grown under field conditions are affected by more than one abiotic stress. It is continuous task and challenge for agronomists to make crops environment hardy to obtain maximum yield. It is considered that different agronomic managements, if done appropriately, could be beneficial for increasing crop production. The optimal provision of plant nutrients can assist the crops to fight in better way with environmental stress like drought; it can help them to continue their normal metabolism even under hostile abiotic circumstances. The regions that have reduced availability of water for crop production, a balanced nutrient management can assist crops to give adequate production. Some of nutrients have potential of not only maintaining plant metabolism but also to enhance the quality of product. This chapter highlights the protagonist of plant nutrients in alleviation of drought stress in field crops.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132513304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-30DOI: 10.5772/intechopen.93852
Amanpreet Singh, H. Chahal
Forage plays a key role in rearing ruminants and protecting the environment. Apart from serving as the primary source of food for domestic and wild animals, forages also contribute to human civilization in different ways like protecting soil through crop over and fertility by addition of organic matter. It also provides habitat for wild animals. A survival strategy plays a more important role than a growth strategy to improve the sustainability of forage production, especially in extreme environmental conditions . Climate change is likely to affect the forage production and nutritional food security for domestic animals. Long-term rainfall data in India indicate that rainfed areas experience 3 to 4 years of drought in every 10 years. Of these, one or two of it occur in severe form. Forage crop production is largely affected by abiotic factors related stress such as drought, salinity, etc. There is need to adopt various conventional and genetic approaches to improve stress tolerance of forage crops.
{"title":"Management of Abiotic Stress in Forage Crops","authors":"Amanpreet Singh, H. Chahal","doi":"10.5772/intechopen.93852","DOIUrl":"https://doi.org/10.5772/intechopen.93852","url":null,"abstract":"Forage plays a key role in rearing ruminants and protecting the environment. Apart from serving as the primary source of food for domestic and wild animals, forages also contribute to human civilization in different ways like protecting soil through crop over and fertility by addition of organic matter. It also provides habitat for wild animals. A survival strategy plays a more important role than a growth strategy to improve the sustainability of forage production, especially in extreme environmental conditions . Climate change is likely to affect the forage production and nutritional food security for domestic animals. Long-term rainfall data in India indicate that rainfed areas experience 3 to 4 years of drought in every 10 years. Of these, one or two of it occur in severe form. Forage crop production is largely affected by abiotic factors related stress such as drought, salinity, etc. There is need to adopt various conventional and genetic approaches to improve stress tolerance of forage crops.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123947446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-20DOI: 10.5772/intechopen.93747
S. Rafique
Maize is the staple food crop and essential for world food security. Maize plants’ water requirement is high for proper growth and development at vegetative stage and grain formation at reproductive stage. Drought is the major abiotic stress that affects almost all the growth stages of maize crop and it has a strong impact on all the physiological process of maize plants. Similarly, N metabolism is of central importance during drought stress. Nitrogen (N) is one of the macronutrients; it is a major requirement for crop growth and grain yield of maize. Therefore, nitrogen and water separately or in combination are the two most critical factors in maize production. Drought modifies source-sink relations and weakens the source and sink strength, which disturbs plant’s growth, plant’s adaptation to stress, and consequently affects crop productivity.
{"title":"Drought Responses on Physiological Attributes of Zea mays in Relation to Nitrogen and Source-Sink Relationships","authors":"S. Rafique","doi":"10.5772/intechopen.93747","DOIUrl":"https://doi.org/10.5772/intechopen.93747","url":null,"abstract":"Maize is the staple food crop and essential for world food security. Maize plants’ water requirement is high for proper growth and development at vegetative stage and grain formation at reproductive stage. Drought is the major abiotic stress that affects almost all the growth stages of maize crop and it has a strong impact on all the physiological process of maize plants. Similarly, N metabolism is of central importance during drought stress. Nitrogen (N) is one of the macronutrients; it is a major requirement for crop growth and grain yield of maize. Therefore, nitrogen and water separately or in combination are the two most critical factors in maize production. Drought modifies source-sink relations and weakens the source and sink strength, which disturbs plant’s growth, plant’s adaptation to stress, and consequently affects crop productivity.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127091748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-19DOI: 10.5772/intechopen.94505
S. Meriç, Alp Ayan, Ç. Atak
In last decades, plants were increasingly subjected to multiple environmental abiotic stress factors as never before due to their stationary nature. Excess urbanization following the intense industrial applications introduced combinations of abiotic stresses as heat, drought, salinity, heavy metals etc. to plants in various intensities. Technological advancements brought novel biotechnological tools to the abiotic stress tolerance area as an alternative to time and money consuming traditional crop breeding activities as well as they brought vast majority of the problem themselves. Discoveries of single gene (as osmoprotectant, detoxyfying enzyme, transporter protein genes etc.) and multi gene (biomolecule synthesis, heat shock protein, regulatory transcription factor and signal transduction genes etc.) targets through functional genomic approaches identified abiotic stress responsive genes through EST based cDNA micro and macro arrays. In nowadays, genetic engineering and genome editing tools are present to transfer genes among different species and modify these target genes in site specific, even single nuclotide specific manner. This present chapter will evaluate genomic engineering approaches and applications targeting these abiotic stress tolerance responsive mechanisms as well as future prospects of genome editing applications in this field.
{"title":"Molecular Abiotic Stress Tolerans Strategies: From Genetic Engineering to Genome Editing Era","authors":"S. Meriç, Alp Ayan, Ç. Atak","doi":"10.5772/intechopen.94505","DOIUrl":"https://doi.org/10.5772/intechopen.94505","url":null,"abstract":"In last decades, plants were increasingly subjected to multiple environmental abiotic stress factors as never before due to their stationary nature. Excess urbanization following the intense industrial applications introduced combinations of abiotic stresses as heat, drought, salinity, heavy metals etc. to plants in various intensities. Technological advancements brought novel biotechnological tools to the abiotic stress tolerance area as an alternative to time and money consuming traditional crop breeding activities as well as they brought vast majority of the problem themselves. Discoveries of single gene (as osmoprotectant, detoxyfying enzyme, transporter protein genes etc.) and multi gene (biomolecule synthesis, heat shock protein, regulatory transcription factor and signal transduction genes etc.) targets through functional genomic approaches identified abiotic stress responsive genes through EST based cDNA micro and macro arrays. In nowadays, genetic engineering and genome editing tools are present to transfer genes among different species and modify these target genes in site specific, even single nuclotide specific manner. This present chapter will evaluate genomic engineering approaches and applications targeting these abiotic stress tolerance responsive mechanisms as well as future prospects of genome editing applications in this field.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128538009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-17DOI: 10.5772/INTECHOPEN.94563
H. Enneb, L. Yahya, M. Ilyas, D. Dhale, M. Bagues, K. Nagaz
In this study, we aim to investigate the physiological and biochemical adaptations of Vicia faba plants to moderate irrigation regime (T1) and describe the effects of water stress on their growth performance and chlorophyll contents. For this reason, three Tunisia accessions (ElHamma, Mareth and Medenine) were studied. An experiment was conducted for one month. Faba bean plants were first grown in a greenhouse and then, exposed to water stress, whereby they were irrigated up to the field capacity (FC) of 0% (control, T0) and 50% of the control (moderate stress, T1). The effect of water stress on physiological parameters showed differences in relation to the accessions studied and the water regime. Relative water content (RWC) of ElHamma accession does not seem to be affected by stress as compared with the control regime. Total chlorophyll content decreases, whereas soluble sugar contents increases for all accessions studied. ElHamma has the highest content. About morphological parameters, bean growth varies according to the ascension and treatment. Hydric stress impedes the growth of the root part and caused a significant reduction in the shoot and root Dry Weight (DW) of the T1-stressed beans, compared to the optimal irrigation (T0).
{"title":"Influence of Water Stress on Growth, Chlorophyll Contents and Solute Accumulation in Three Accessions of Vicia faba L. from Tunisian Arid Region","authors":"H. Enneb, L. Yahya, M. Ilyas, D. Dhale, M. Bagues, K. Nagaz","doi":"10.5772/INTECHOPEN.94563","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.94563","url":null,"abstract":"In this study, we aim to investigate the physiological and biochemical adaptations of Vicia faba plants to moderate irrigation regime (T1) and describe the effects of water stress on their growth performance and chlorophyll contents. For this reason, three Tunisia accessions (ElHamma, Mareth and Medenine) were studied. An experiment was conducted for one month. Faba bean plants were first grown in a greenhouse and then, exposed to water stress, whereby they were irrigated up to the field capacity (FC) of 0% (control, T0) and 50% of the control (moderate stress, T1). The effect of water stress on physiological parameters showed differences in relation to the accessions studied and the water regime. Relative water content (RWC) of ElHamma accession does not seem to be affected by stress as compared with the control regime. Total chlorophyll content decreases, whereas soluble sugar contents increases for all accessions studied. ElHamma has the highest content. About morphological parameters, bean growth varies according to the ascension and treatment. Hydric stress impedes the growth of the root part and caused a significant reduction in the shoot and root Dry Weight (DW) of the T1-stressed beans, compared to the optimal irrigation (T0).","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116405061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-30DOI: 10.5772/intechopen.93751
N. Sandhu, S. Yadav, Arvind Kumar
Increasing incidences of multiple abiotic stresses together with increasing population are the major constraints to attain the global food security. Rice, the major staple food crop is very much prone to various abiotic and biotic stresses, which can occur one at a time or two or more together in a single crop growing season and adversely affects the rice production and productivity. The devastating effect of multiple stresses on rice crop is much more erratic and complex leading to higher losses in the crop grain yield. The concurrent occurrence of multiple streeses can destroy rice production in many of the rainfed areas of South and Southeast-Asia. Genomics-assisted breeding strategies have been instrumental in introgression of various major effect QTLs/genes into rice mega varieties and have proven successful in achieving the desired level of tolerance/resistance to various abiotic stresses in diffferent crop species. Keeping the present scenario of changing climate in mind, the chapter discusses the recent past success in combining tolerance to two or more abiotic stresses in mega rice varieties applying genomics-assisted breeding and development of high-yielding climate resilient rice through stacking of multiple genes/QTLs, which can withstand in a cascade of multiple stresses occurring regularly in rainfed environments.
{"title":"Advances in Developing Multigene Abiotic and Biotic Stress-Tolerant Rice Varieties","authors":"N. Sandhu, S. Yadav, Arvind Kumar","doi":"10.5772/intechopen.93751","DOIUrl":"https://doi.org/10.5772/intechopen.93751","url":null,"abstract":"Increasing incidences of multiple abiotic stresses together with increasing population are the major constraints to attain the global food security. Rice, the major staple food crop is very much prone to various abiotic and biotic stresses, which can occur one at a time or two or more together in a single crop growing season and adversely affects the rice production and productivity. The devastating effect of multiple stresses on rice crop is much more erratic and complex leading to higher losses in the crop grain yield. The concurrent occurrence of multiple streeses can destroy rice production in many of the rainfed areas of South and Southeast-Asia. Genomics-assisted breeding strategies have been instrumental in introgression of various major effect QTLs/genes into rice mega varieties and have proven successful in achieving the desired level of tolerance/resistance to various abiotic stresses in diffferent crop species. Keeping the present scenario of changing climate in mind, the chapter discusses the recent past success in combining tolerance to two or more abiotic stresses in mega rice varieties applying genomics-assisted breeding and development of high-yielding climate resilient rice through stacking of multiple genes/QTLs, which can withstand in a cascade of multiple stresses occurring regularly in rainfed environments.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122840765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-28DOI: 10.5772/intechopen.94128
Ayman El Sabagh, A. Hossain, M. Islam, M. Iqbal, A. Raza, Ç. Karademi̇r, E. Karademir, A. Rehman, Atikur Rahman, Rajesh Kumar Singhal, A. Llanes, M. Raza, M. Mubeen, W. Nasim, C. Barutçular, R. Meena, H. Saneoka
The rising concentration of atmospheric carbon dioxide (aCO2) and increasing temperature are the main reasons for climate change, which are significantly affecting crop production systems in this world. However, the elevated carbon dioxide (CO2) concentration can improve the growth and development of crop plants by increasing photosynthetic rate (higher availability of photoassimilates). The combined effects of elevated CO2 (eCO2) and temperature on crop growth and carbon metabolism are not adequately recognized, while both eCO2 and temperature triggered noteworthy changes in crop production. Therefore, to increase crop yields, it is important to identify the physiological mechanisms and genetic traits of crop plants which play a vital role in stress tolerance under the prevailing conditions. The eCO2 and temperature stress effects on physiological aspects as well as biochemical profile to characterize genotypes that differ in their response to stress conditions. The aim of this review is directed the open-top cavities to regulate the properties like physiological, biochemical, and yield of crops under increasing aCO2, and temperature. Overall, the extent of the effect of eCO2 and temperature response to biochemical components and antioxidants remains unclear, and therefore further studies are required to promote an unperturbed production system.
{"title":"Elevated CO2 Concentration Improves Heat-Tolerant Ability in Crops","authors":"Ayman El Sabagh, A. Hossain, M. Islam, M. Iqbal, A. Raza, Ç. Karademi̇r, E. Karademir, A. Rehman, Atikur Rahman, Rajesh Kumar Singhal, A. Llanes, M. Raza, M. Mubeen, W. Nasim, C. Barutçular, R. Meena, H. Saneoka","doi":"10.5772/intechopen.94128","DOIUrl":"https://doi.org/10.5772/intechopen.94128","url":null,"abstract":"The rising concentration of atmospheric carbon dioxide (aCO2) and increasing temperature are the main reasons for climate change, which are significantly affecting crop production systems in this world. However, the elevated carbon dioxide (CO2) concentration can improve the growth and development of crop plants by increasing photosynthetic rate (higher availability of photoassimilates). The combined effects of elevated CO2 (eCO2) and temperature on crop growth and carbon metabolism are not adequately recognized, while both eCO2 and temperature triggered noteworthy changes in crop production. Therefore, to increase crop yields, it is important to identify the physiological mechanisms and genetic traits of crop plants which play a vital role in stress tolerance under the prevailing conditions. The eCO2 and temperature stress effects on physiological aspects as well as biochemical profile to characterize genotypes that differ in their response to stress conditions. The aim of this review is directed the open-top cavities to regulate the properties like physiological, biochemical, and yield of crops under increasing aCO2, and temperature. Overall, the extent of the effect of eCO2 and temperature response to biochemical components and antioxidants remains unclear, and therefore further studies are required to promote an unperturbed production system.","PeriodicalId":338195,"journal":{"name":"Abiotic Stress in Plants","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122049341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}