Pub Date : 2022-06-30DOI: 10.32665/statkom.v1i1.444
Khoirin Nisa
Latar Belakang: Kasus Demam Berdarah Dengue (DBD) di Kabupaten Bojonegoro meningkat dari tahun 2017 sampai tahun 2019. Hal ini menjadi sulit karena wilayah geografis yang sangat luas di setiap Kecamatan. Untuk menganalisis masalah ini, perlu diberikan pemodelan regresi spasial yang memperhitungkan perbedaan wilayah. Tujuan: Menganalisis pengaruh variabel-variabel prediktor terhadap banyaknya kasus DBD per Kecamatan di Kabupaten Bojonegoro dengan model Geographically Weighted Poisson Regression (GWPR). Metode: Menerapkan metode kuantitatif berupa pemodelan GWPR dengan perbandingan kernel yaitu kernel fixed Gaussian, fixed bi-square, adaptive bi-square, dan adaptive Gaussian. Sumber data yang digunakan adalah data sekunder diperoleh dari laporan Badan Pusat Statistik (BPS) dan Dinas Kesehatan Bojonegoro pada tahun 2017-2019 per Kecamatan di Kabupaten Bojonegoro. Hasil: Diperoleh model GWPR terbaik untuk kernel fixed bi-square dengan nilai deviance sebesar 610,5541 dan AIC sebesar 647,6348. Dari 28 Kecamatan di Kabupaten Bojonegoro, kepadatan penduduk memiliki pengaruh signifikan positif pada 1 Kecamatan dan negatif 10 Kecamatan, fasilitas kesehatan mempunyai pengaruh signifikan positif pada 19 Kecamatan dan negatif 1 Kecamatan, dan tenaga kerja kesehatan memiliki pengaruh signifikan positif pada 11 Kecamatan dan negatif 3 Kecamatan. Kesimpulan: Pemodelan GWPR memberikan masukan pengetahuan bahwa kepadatan penduduk, fasilitas kesehatan, dan tenaga kerja kesehatan secara spasial signifikan mempengaruhi kasus DBD di Kabupaten Bojonegoro.
{"title":"Penerapan Model Geographically Weighted Poisson Regression untuk Demam Berdarah Dengue Di Kabupaten Bojonegoro","authors":"Khoirin Nisa","doi":"10.32665/statkom.v1i1.444","DOIUrl":"https://doi.org/10.32665/statkom.v1i1.444","url":null,"abstract":"Latar Belakang: Kasus Demam Berdarah Dengue (DBD) di Kabupaten Bojonegoro meningkat dari tahun 2017 sampai tahun 2019. Hal ini menjadi sulit karena wilayah geografis yang sangat luas di setiap Kecamatan. Untuk menganalisis masalah ini, perlu diberikan pemodelan regresi spasial yang memperhitungkan perbedaan wilayah.\u0000Tujuan: Menganalisis pengaruh variabel-variabel prediktor terhadap banyaknya kasus DBD per Kecamatan di Kabupaten Bojonegoro dengan model Geographically Weighted Poisson Regression (GWPR).\u0000Metode: Menerapkan metode kuantitatif berupa pemodelan GWPR dengan perbandingan kernel yaitu kernel fixed Gaussian, fixed bi-square, adaptive bi-square, dan adaptive Gaussian. Sumber data yang digunakan adalah data sekunder diperoleh dari laporan Badan Pusat Statistik (BPS) dan Dinas Kesehatan Bojonegoro pada tahun 2017-2019 per Kecamatan di Kabupaten Bojonegoro.\u0000Hasil: Diperoleh model GWPR terbaik untuk kernel fixed bi-square dengan nilai deviance sebesar 610,5541 dan AIC sebesar 647,6348. Dari 28 Kecamatan di Kabupaten Bojonegoro, kepadatan penduduk memiliki pengaruh signifikan positif pada 1 Kecamatan dan negatif 10 Kecamatan, fasilitas kesehatan mempunyai pengaruh signifikan positif pada 19 Kecamatan dan negatif 1 Kecamatan, dan tenaga kerja kesehatan memiliki pengaruh signifikan positif pada 11 Kecamatan dan negatif 3 Kecamatan.\u0000Kesimpulan: Pemodelan GWPR memberikan masukan pengetahuan bahwa kepadatan penduduk, fasilitas kesehatan, dan tenaga kerja kesehatan secara spasial signifikan mempengaruhi kasus DBD di Kabupaten Bojonegoro.","PeriodicalId":340369,"journal":{"name":"Jurnal Statistika dan Komputasi","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125055707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.32665/statkom.v1i1.442
M. T. D. Winarko, Alif Yuanita Kartini
Latar Belakang: Tidak semua petugas parkir Dinas Perhubungan Kabupaten Bojonegoro melaksanakan kerjanya baik dan sesuai dengan standard operational procedure (SOP). Bentuk pembekalan dan sosialisasi oleh dinas terkait sudah diberikan, namun pengguna layanan jasa parkir merasa kurang puas. Untuk menganalisis masalah ini, diterapkan pemodelan regresi logistik ordinal untuk menilai kepuasan pelanggan. Tujuan: Mengetahui tingkat kepuasan dan faktor-faktor yang secara signifikan berpengaruh terhadap tingkat kepuasan pengguna jasa petugas parkir Dinas Perhubungan Kabupaten Bojonegoro. Metode: Metode Penelitian yang digunakan adalah metode kuantitatif berupa analisis regresi logistik ordinal. Digunakan accidental sampling dengan mengambil sampel dari responden yang kebetulan memakai jasa parkir petugas Dinas Perhubungan Kabupaten Bojonegoro. Variabel dependen adalah tingkat kepuasan pengguna jasa petugas parkir yang berskala ordinal dan variabel-variabel independen meliputi tangibles, reliability, responsiveness, emphaty dan assurance. Hasil: Kepuasan pengguna terhadap pelayanan petugas parkir terbesar adalah 35% cukup puas dan terbesar kedua 29% kurang puas. Dari hasil odds ratio, semakin besar tangibles, responsiveness, dan emphaty petugas parkir masing-masing memiliki peluang 2,0719; 5,9793; dan 9,0802 kali lebih besar daripada variabel lainnya terhadap tingkat kepuasaan pengguna petugas parkir. Kesimpulan: Mayoritas pengguna pelayanan petugas parkir kurang puas dan cukup puas. Penerapan regresi logistik ordinal memberikan pengetahuan bahwa tangibles, responsiveness, dan emphaty petugas parkir mempengaruhi kepuasan pengguna.
{"title":"Analisis Kepuasan Pengguna Jasa Petugas Parkir Dinas Perhubungan Bojonegoro Menggunakan Regresi Logistik Ordinal","authors":"M. T. D. Winarko, Alif Yuanita Kartini","doi":"10.32665/statkom.v1i1.442","DOIUrl":"https://doi.org/10.32665/statkom.v1i1.442","url":null,"abstract":"Latar Belakang: Tidak semua petugas parkir Dinas Perhubungan Kabupaten Bojonegoro melaksanakan kerjanya baik dan sesuai dengan standard operational procedure (SOP). Bentuk pembekalan dan sosialisasi oleh dinas terkait sudah diberikan, namun pengguna layanan jasa parkir merasa kurang puas. Untuk menganalisis masalah ini, diterapkan pemodelan regresi logistik ordinal untuk menilai kepuasan pelanggan.\u0000Tujuan: Mengetahui tingkat kepuasan dan faktor-faktor yang secara signifikan berpengaruh terhadap tingkat kepuasan pengguna jasa petugas parkir Dinas Perhubungan Kabupaten Bojonegoro.\u0000Metode: Metode Penelitian yang digunakan adalah metode kuantitatif berupa analisis regresi logistik ordinal. Digunakan accidental sampling dengan mengambil sampel dari responden yang kebetulan memakai jasa parkir petugas Dinas Perhubungan Kabupaten Bojonegoro. Variabel dependen adalah tingkat kepuasan pengguna jasa petugas parkir yang berskala ordinal dan variabel-variabel independen meliputi tangibles, reliability, responsiveness, emphaty dan assurance.\u0000Hasil: Kepuasan pengguna terhadap pelayanan petugas parkir terbesar adalah 35% cukup puas dan terbesar kedua 29% kurang puas. Dari hasil odds ratio, semakin besar tangibles, responsiveness, dan emphaty petugas parkir masing-masing memiliki peluang 2,0719; 5,9793; dan 9,0802 kali lebih besar daripada variabel lainnya terhadap tingkat kepuasaan pengguna petugas parkir.\u0000Kesimpulan: Mayoritas pengguna pelayanan petugas parkir kurang puas dan cukup puas. Penerapan regresi logistik ordinal memberikan pengetahuan bahwa tangibles, responsiveness, dan emphaty petugas parkir mempengaruhi kepuasan pengguna.","PeriodicalId":340369,"journal":{"name":"Jurnal Statistika dan Komputasi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114852930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.32665/statkom.v1i1.443
Nisa Arofatus Sholikhah
Latar Belakang: Dokumen kependudukan di Kabupaten Bojonegoro memiliki tingkat kepentingan yang tinggi sehingga pemerintah menyediakan aplikasi Sistem Informasi Manajemen Kependudukan (SIMDUK), namun dalam prakteknya aplikasi ini kurang efektif karena rendahnya kesadaran masyarakat dalam melengkapi dokumen kependudukan. Untuk mengatasi permasalahan ini, diperlukan adanya pengelompokan Kecamatan di Kabupaten Bojonegoro berdasarkan kelengkapan kepemilikan dokumen kependudukan. Tujuan: Melakukan perbandingan metode-metode clustering dalam rangka mendapatkan metode terbaik sehingga bisa digunakan untuk pengelompokan Kecamatan di Kabupaten Bojonegoro. Metode: Menerapkan metode kuantitatif berupa metode clustering yaitu K-Means, K-Medoid, X-Means, dan DBSCAN. Metode clustering terbaik dipilih berdasarkan ukuran performance vector terkecil. Sumber data berasal dari data sekunder dari Dinas Kependudukan dan Catatan Sipil Kabupaten Bojonegoro tahun 2020. Hasil: Diperoleh metode clustering terbaik yaitu metode K-Means dengan performance vector sebesar -0,697 dalam membentuk 5 cluster yaitu cluster 1 dengan klasifikasi sangat aktif yang beranggotakan 4 kecamatan, cluster 3 dengan klasifikasi aktif beranggotakan 5 kecamatan, cluster 4 dengan klasifikasi cukup aktif beranggotakan 7 kecamatan, cluster 0 dengan klasifikasi kurang aktif beranggotakan 8 kecamatan, dan cluster 2 dengan klasifikasi tidak aktif yang beranggotakan 4 kecamatan. Kesimpulan: Metode clustering terbaik yaitu metode K-Means yang berhasil mengelompokkan Kecamatan di Kabupaten Bojonegoro berdasarkan kelengkapan kepemilikan dokumen kependudukan, serta menginformasikan banyaknya kecamatan yang kurang aktif.
{"title":"Studi Perbandingan Clustering Kecamatan di Kabupaten Bojonegoro Berdasarkan Keaktifan Penduduk Dalam Kepemilikan Dokumen Kependudukan","authors":"Nisa Arofatus Sholikhah","doi":"10.32665/statkom.v1i1.443","DOIUrl":"https://doi.org/10.32665/statkom.v1i1.443","url":null,"abstract":"Latar Belakang: Dokumen kependudukan di Kabupaten Bojonegoro memiliki tingkat kepentingan yang tinggi sehingga pemerintah menyediakan aplikasi Sistem Informasi Manajemen Kependudukan (SIMDUK), namun dalam prakteknya aplikasi ini kurang efektif karena rendahnya kesadaran masyarakat dalam melengkapi dokumen kependudukan. Untuk mengatasi permasalahan ini, diperlukan adanya pengelompokan Kecamatan di Kabupaten Bojonegoro berdasarkan kelengkapan kepemilikan dokumen kependudukan.\u0000Tujuan: Melakukan perbandingan metode-metode clustering dalam rangka mendapatkan metode terbaik sehingga bisa digunakan untuk pengelompokan Kecamatan di Kabupaten Bojonegoro.\u0000Metode: Menerapkan metode kuantitatif berupa metode clustering yaitu K-Means, K-Medoid, X-Means, dan DBSCAN. Metode clustering terbaik dipilih berdasarkan ukuran performance vector terkecil. Sumber data berasal dari data sekunder dari Dinas Kependudukan dan Catatan Sipil Kabupaten Bojonegoro tahun 2020.\u0000Hasil: Diperoleh metode clustering terbaik yaitu metode K-Means dengan performance vector sebesar -0,697 dalam membentuk 5 cluster yaitu cluster 1 dengan klasifikasi sangat aktif yang beranggotakan 4 kecamatan, cluster 3 dengan klasifikasi aktif beranggotakan 5 kecamatan, cluster 4 dengan klasifikasi cukup aktif beranggotakan 7 kecamatan, cluster 0 dengan klasifikasi kurang aktif beranggotakan 8 kecamatan, dan cluster 2 dengan klasifikasi tidak aktif yang beranggotakan 4 kecamatan.\u0000Kesimpulan: Metode clustering terbaik yaitu metode K-Means yang berhasil mengelompokkan Kecamatan di Kabupaten Bojonegoro berdasarkan kelengkapan kepemilikan dokumen kependudukan, serta menginformasikan banyaknya kecamatan yang kurang aktif.","PeriodicalId":340369,"journal":{"name":"Jurnal Statistika dan Komputasi","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127391190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.32665/statkom.v1i1.451
Nur Khoiriyah, Nita Cahyani
Latar Belakang: Peramalan memainkan peran penting dalam kegiatan pengambilan keputusan dalam manajemen organisasi. Kebutuhan akan peramalan yang andal semakin meningkat seiring upaya manajemen untuk mengurangi ketergantungannya pada peluang dan menjadi lebih ilmiah dalam menangani masalah-masalahnya. Terutama masalah yang terjadi pada kasus peramalan banyaknya pasien rawat jalan di Dr. R. Sosodoro Djatikoesoemo Bojonegoro. Peningkatan banyaknya pasien rawat jalan dapat diperkirakan sehingga menjadi antisipasi manajer rumah sakit dalam persediaan obat-obatan, fasilitas kesehatan, dan tenaga kesehatan. Tujuan: Meramalkan banyaknya kunjungan pasien rawat jalan di RSUD Dr. R. Sosodoro Djatikoesoemo Bojonegoro dengan model Brown's double exponential smoothing. Metode: Digunakan metode kuantitatif berupa peramalan deret waktu dengan menggunakan model Brown's double exponential smoothing dengan satu parameter yaitu ?. Model peramalan diperoleh melalui pemilihan ? terbaik berdasarkan kriteria model terbaik yaitu mean absolute percentage error (MAPE). Hasil: Diperoleh model terbaik dengan ? sebesar 0,2 dan MAPE sebesar 18. Hasil peramalan model untuk 5 bulan ke depan adalah 12.643 pada bulan Agustus, 12.895 bulan September, 13.147 bulan Oktober, 13.399 bulan November, dan 13.651 bulan Desember. Kesimpulan: Hasil peramalan pasien rawat jalan di RSUD Dr. R. Sosodoro Djatikoesoemo untuk 5 bulan menjadi masukan pengetahuan dugaan ke depan bagi manajemen rumah sakit dalam mengatasi banyaknya pasien rawat jalan.
{"title":"Peramalan Banyaknya Pasien Rawat Jalan dengan Menggunakan Metode Brown's Double Exponential Smoothing","authors":"Nur Khoiriyah, Nita Cahyani","doi":"10.32665/statkom.v1i1.451","DOIUrl":"https://doi.org/10.32665/statkom.v1i1.451","url":null,"abstract":"Latar Belakang: Peramalan memainkan peran penting dalam kegiatan pengambilan keputusan dalam manajemen organisasi. Kebutuhan akan peramalan yang andal semakin meningkat seiring upaya manajemen untuk mengurangi ketergantungannya pada peluang dan menjadi lebih ilmiah dalam menangani masalah-masalahnya. Terutama masalah yang terjadi pada kasus peramalan banyaknya pasien rawat jalan di Dr. R. Sosodoro Djatikoesoemo Bojonegoro. Peningkatan banyaknya pasien rawat jalan dapat diperkirakan sehingga menjadi antisipasi manajer rumah sakit dalam persediaan obat-obatan, fasilitas kesehatan, dan tenaga kesehatan.\u0000Tujuan: Meramalkan banyaknya kunjungan pasien rawat jalan di RSUD Dr. R. Sosodoro Djatikoesoemo Bojonegoro dengan model Brown's double exponential smoothing.\u0000Metode: Digunakan metode kuantitatif berupa peramalan deret waktu dengan menggunakan model Brown's double exponential smoothing dengan satu parameter yaitu ?. Model peramalan diperoleh melalui pemilihan ? terbaik berdasarkan kriteria model terbaik yaitu mean absolute percentage error (MAPE).\u0000Hasil: Diperoleh model terbaik dengan ? sebesar 0,2 dan MAPE sebesar 18. Hasil peramalan model untuk 5 bulan ke depan adalah 12.643 pada bulan Agustus, 12.895 bulan September, 13.147 bulan Oktober, 13.399 bulan November, dan 13.651 bulan Desember.\u0000Kesimpulan: Hasil peramalan pasien rawat jalan di RSUD Dr. R. Sosodoro Djatikoesoemo untuk 5 bulan menjadi masukan pengetahuan dugaan ke depan bagi manajemen rumah sakit dalam mengatasi banyaknya pasien rawat jalan.","PeriodicalId":340369,"journal":{"name":"Jurnal Statistika dan Komputasi","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114551269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.32665/statkom.v1i1.447
Ummi Agustin Yuliana
Latar Belakang: Ketersediaan beras menjadi komponen utama penyebab inflasi dan kurangnya beras mengganggu ketahanan pangan nasional. Kabupaten Bojonegoro menjadi produksi padi menempati urutan ketiga di Provinsi Jawa timur, namun permasalahan yang dihadapi adalah penurunan ketersediaan beras dari tahun ke tahun. Untuk menganalisis permasalahan ini diperlukan adanya pemodelan pola hubungan ketersediaan beras dengan variabel-variabel prediktornya. Tujuan: Mengetahui variabel-variabel prediktor yang berpengaruh terhadap Ketersediaan Beras di Kabupaten Bojonegoro pada tahun 2016 sampai 2020 dengan menggunakan analisis regresi data panel. Metode: Menerapkan metode kuantitatif berupa pemodelan regresi data panel dengan perbandingan hasil common effect model, fixed effect model, dan random effect model. Sumber data digunakan data sekunder berupa data ketersediaan beras, luas panen, dan jumlah penduduk yang berasal dari Kabupaten Bojonegoro pada tahun 2016 sampai 2020. Hasil: Diperoleh model regresi data panel terbaik adalah fixed effect model dengan nilai R-squared sebesar 74,77% dan AIC sebesar 20,6921. Terdapat pengaruh signifikan positif luas panen dan jumlah penduduk terhadap ketersediaan beras. Setiap peningkatan Luas Panen 1 Ha dan Jumlah Penduduk 1 jiwa masing-masing akan menyebabkan peningkatan Ketersediaan Beras sebesar 0,9908 ton dan 0,4265 ton. Kesimpulan: Penerapan model regresi data panel memberikan pengetahuan bahwa luas panen dan jumlah penduduk secara positif mempengaruhi ketersediaan beras di Kabupaten Bojonegoro.
{"title":"Pemodelan Regresi Data Panel Untuk Memprediksi Ketersediaan Beras Di Kabupaten Bojonegoro","authors":"Ummi Agustin Yuliana","doi":"10.32665/statkom.v1i1.447","DOIUrl":"https://doi.org/10.32665/statkom.v1i1.447","url":null,"abstract":"Latar Belakang: Ketersediaan beras menjadi komponen utama penyebab inflasi dan kurangnya beras mengganggu ketahanan pangan nasional. Kabupaten Bojonegoro menjadi produksi padi menempati urutan ketiga di Provinsi Jawa timur, namun permasalahan yang dihadapi adalah penurunan ketersediaan beras dari tahun ke tahun. Untuk menganalisis permasalahan ini diperlukan adanya pemodelan pola hubungan ketersediaan beras dengan variabel-variabel prediktornya.\u0000Tujuan: Mengetahui variabel-variabel prediktor yang berpengaruh terhadap Ketersediaan Beras di Kabupaten Bojonegoro pada tahun 2016 sampai 2020 dengan menggunakan analisis regresi data panel.\u0000Metode: Menerapkan metode kuantitatif berupa pemodelan regresi data panel dengan perbandingan hasil common effect model, fixed effect model, dan random effect model. Sumber data digunakan data sekunder berupa data ketersediaan beras, luas panen, dan jumlah penduduk yang berasal dari Kabupaten Bojonegoro pada tahun 2016 sampai 2020.\u0000Hasil: Diperoleh model regresi data panel terbaik adalah fixed effect model dengan nilai R-squared sebesar 74,77% dan AIC sebesar 20,6921. Terdapat pengaruh signifikan positif luas panen dan jumlah penduduk terhadap ketersediaan beras. Setiap peningkatan Luas Panen 1 Ha dan Jumlah Penduduk 1 jiwa masing-masing akan menyebabkan peningkatan Ketersediaan Beras sebesar 0,9908 ton dan 0,4265 ton.\u0000Kesimpulan: Penerapan model regresi data panel memberikan pengetahuan bahwa luas panen dan jumlah penduduk secara positif mempengaruhi ketersediaan beras di Kabupaten Bojonegoro.","PeriodicalId":340369,"journal":{"name":"Jurnal Statistika dan Komputasi","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129814871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}