首页 > 最新文献

Jurnal Sisfokom最新文献

英文 中文
Analisis dan Desain Sistem Informasi Monitoring Dosen Menggunakan RFID pada Universitas XYZ 大学讲师使用XYZ大学的RFID信息系统分析和设计
Pub Date : 2023-09-15 DOI: 10.25126/justsi.v4i2.160
Renaldy Wijaya Putra, Yusi Tyroni Mursityo, Widhy Hayuhardhika Nugraha Putra
Perkembangan teknologi informasi membuat banyak organisasi atau perusahaan menginginkan untuk mengadopsi teknologi informasi demi meningkatkan kinerja dan hasil bisnis yang maksimal dalam suatu organisasi. Saat ini perkembangan teknologi informasi sangatlah pesat dan cepat termasuk di Indonesia sendiri. Salah satu bentuk penerapan teknologi informasi yaitu sistem informasi monitoring untuk tujuan apapun bentuknya, baik untuk tujuan kesehatan, pendidikan, keuangan, dan kebutuhan instansi atau organisasi pada tingkat management terkait kepegawaian. Pada praktiknya, sistem informasi monitoring tidak selalu berjalan dengan maksimal, bahkan ditemukan di beberapa instansi atau organisasi yang belum menerapkan sistem ini, salah satu contohnya yaitu di Universitas XYZ. Saat ini, di Universitas XYZ kehadiran dosen masih terpusat mengikuti sistem kehadiran dari Universitas yang mana tujuannya jelas hanya untuk kebutuhan tingkat management saja, padahal pada praktiknya informasi monitoring tersebut juga dibutuhkan mahasiswa. Pada penelitian ini, dilakukan analisis serta desain Sistem Informasi Monitoring Dosen (SIMD) dengan menggunakan metode Rapid Application Development (RAD) serta melibatkan User Experience Questionnaire (UEQ) untuk menguji user experience dan usability system yang telah dikembangkan. Hasil pengujian sistem menggunakan UEQ menghasilkan nilai skala “Daya tarik” 1.700, skala “Kejelasan” 1.800, skala “Efisiensi” 1.463, skala “Ketepatan” 0.950, skala “Stimulasi” 1.000, dan skala “Kebaruan” 1.363. Nilai yang didapat tersebut sudah melewati batas minimum UEQ yang berada pada nilai 0.8, sehingga dapat dikatakan Sistem Informasi Monitoring Dosen (SIMD) dapat diterima dengan baik oleh pengguna.
信息技术的发展使许多组织或公司希望采用信息技术来提高其组织的最大业绩和结果。今天的信息技术发展迅速,包括印尼本身。一种信息技术的应用形式是一种信息监控系统,用于任何形式的目的,无论是为了健康、教育、金融,还是为了相关管理水平的机构或组织的需要。在实践中,监控信息系统并不总是在最大限度地运行,甚至在一些尚未实现这一系统的机构或组织中也可以找到,这是XYZ大学的一个例子。目前,在XYZ大学,教师的出发点仍然集中在一所大学的出发点上,这所大学的出发点显然只是为了满足管理水平的需要,而实际上的监控信息也需要学生。在这项研究中,通过使用快速应用开发(RAD)方法进行分析和设计教授(SIMD),并涉及用户体验问题(UEQ)来测试已经开发的用户体验和usability系统。使用UEQ的系统测试结果产生了1700个“吸引力”,“1800度”,“效率”量表1463,“精确度”0950,“刺激”量表1000,“新奇性”量表1363。这样的成绩已经超过了0.8级的最低上上的UEQ,可以说讲师指导信息系统(SIMD)是可以很好地接受的。
{"title":"Analisis dan Desain Sistem Informasi Monitoring Dosen Menggunakan RFID pada Universitas XYZ","authors":"Renaldy Wijaya Putra, Yusi Tyroni Mursityo, Widhy Hayuhardhika Nugraha Putra","doi":"10.25126/justsi.v4i2.160","DOIUrl":"https://doi.org/10.25126/justsi.v4i2.160","url":null,"abstract":"Perkembangan teknologi informasi membuat banyak organisasi atau perusahaan menginginkan untuk mengadopsi teknologi informasi demi meningkatkan kinerja dan hasil bisnis yang maksimal dalam suatu organisasi. Saat ini perkembangan teknologi informasi sangatlah pesat dan cepat termasuk di Indonesia sendiri. Salah satu bentuk penerapan teknologi informasi yaitu sistem informasi monitoring untuk tujuan apapun bentuknya, baik untuk tujuan kesehatan, pendidikan, keuangan, dan kebutuhan instansi atau organisasi pada tingkat management terkait kepegawaian. Pada praktiknya, sistem informasi monitoring tidak selalu berjalan dengan maksimal, bahkan ditemukan di beberapa instansi atau organisasi yang belum menerapkan sistem ini, salah satu contohnya yaitu di Universitas XYZ. Saat ini, di Universitas XYZ kehadiran dosen masih terpusat mengikuti sistem kehadiran dari Universitas yang mana tujuannya jelas hanya untuk kebutuhan tingkat management saja, padahal pada praktiknya informasi monitoring tersebut juga dibutuhkan mahasiswa. Pada penelitian ini, dilakukan analisis serta desain Sistem Informasi Monitoring Dosen (SIMD) dengan menggunakan metode Rapid Application Development (RAD) serta melibatkan User Experience Questionnaire (UEQ) untuk menguji user experience dan usability system yang telah dikembangkan. Hasil pengujian sistem menggunakan UEQ menghasilkan nilai skala “Daya tarik” 1.700, skala “Kejelasan” 1.800, skala “Efisiensi” 1.463, skala “Ketepatan” 0.950, skala “Stimulasi” 1.000, dan skala “Kebaruan” 1.363. Nilai yang didapat tersebut sudah melewati batas minimum UEQ yang berada pada nilai 0.8, sehingga dapat dikatakan Sistem Informasi Monitoring Dosen (SIMD) dapat diterima dengan baik oleh pengguna.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135436582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aplikasi Analisis Sentimen Komentar Pengguna Genshin Impact Di Play Store
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26029
Muhammad Farras, Viny Christanti Mawardi, T. Sutrisno
Google Play functions as the official app store for the Android operating system, allowing users to browse and discover applications developed with the Android software development kit (SDK) and published through Google. Google Play also serves as a digital media store, offering music programs, books, movies, and television shows. It previously offered Google hardware for purchase until it introduced a separate online hardware store, Google Store, on March 11, 2015.The research will utilize a web-based application development tool that uses Flask and JavaScript as the application interface, and the Pandas library from Python for data manipulation. Naïve Bayes will be employed as the methodology for analyzing sentiments based on words, and K-Fold Cross Validation will be used to strengthen the accuracy of the analysis results.Sentiment analysis typically classifies opinions into three categories: positive and negative. However, applications that can perform the process of creating training and testing sets from consumer opinion data, simultaneously analyzing consumer sentiment and dynamically measuring the accuracy of the analysis results, are still scarce. This study aims to develop an application capable of analyzing consumer sentiment with the mentioned functionalities, wherein Naive Bayes is used as the classification method.
Google Play是Android操作系统的官方应用商店,允许用户浏览和发现使用Android SDK (software development kit)开发并通过Google发布的应用。Google Play也是一个数字媒体商店,提供音乐节目、书籍、电影和电视节目。在2015年3月11日推出单独的在线硬件商店Google store之前,它曾提供谷歌硬件供购买。该研究将利用基于web的应用程序开发工具,该工具使用Flask和JavaScript作为应用程序接口,并使用Python的Pandas库进行数据操作。Naïve将使用贝叶斯作为基于单词的情感分析方法,并使用K-Fold交叉验证来加强分析结果的准确性。情感分析通常将观点分为三类:积极的和消极的。然而,能够执行从消费者意见数据创建训练和测试集的过程,同时分析消费者情绪并动态测量分析结果准确性的应用程序仍然很少。本研究旨在开发一个能够分析消费者情绪的应用程序,其中使用朴素贝叶斯作为分类方法。
{"title":"Aplikasi Analisis Sentimen Komentar Pengguna Genshin Impact Di Play Store","authors":"Muhammad Farras, Viny Christanti Mawardi, T. Sutrisno","doi":"10.24912/jiksi.v11i2.26029","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26029","url":null,"abstract":"Google Play functions as the official app store for the Android operating system, allowing users to browse and discover applications developed with the Android software development kit (SDK) and published through Google. Google Play also serves as a digital media store, offering music programs, books, movies, and television shows. It previously offered Google hardware for purchase until it introduced a separate online hardware store, Google Store, on March 11, 2015.The research will utilize a web-based application development tool that uses Flask and JavaScript as the application interface, and the Pandas library from Python for data manipulation. Naïve Bayes will be employed as the methodology for analyzing sentiments based on words, and K-Fold Cross Validation will be used to strengthen the accuracy of the analysis results.Sentiment analysis typically classifies opinions into three categories: positive and negative. However, applications that can perform the process of creating training and testing sets from consumer opinion data, simultaneously analyzing consumer sentiment and dynamically measuring the accuracy of the analysis results, are still scarce. This study aims to develop an application capable of analyzing consumer sentiment with the mentioned functionalities, wherein Naive Bayes is used as the classification method.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88438635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PERANCANGAN DASHBOARD PERFOMA SALES DI CV MIRKO SEJAHTERA ABADI
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26020
Jeffrey Triguna, Bagus Mulyawan
Dashboard is design for CV Mirko Sejahtera Abadi aims to improve the sales performance of CV Mirko Sejahtera Abadi. Making the dashboard can make CV Mirko Sejahtera Abadi easier to know their sales every month and also, they sales performance every month. The design of this dashboard uses the Waterfall model System Development Life Cycle (SDLC) development methodology. The database used in this application is MySQL. The programming languages used are HTML and PHP.
仪表板是为CV Mirko Sejahtera Abadi设计的,旨在提高CV Mirko Sejahtera Abadi的销售业绩。制作仪表盘可以让CV Mirko Sejahtera Abadi更容易了解他们每个月的销售情况,以及他们每个月的销售业绩。该仪表板的设计使用瀑布模型系统开发生命周期(SDLC)开发方法。本应用程序中使用的数据库是MySQL。使用的编程语言是HTML和PHP。
{"title":"PERANCANGAN DASHBOARD PERFOMA SALES DI CV MIRKO SEJAHTERA ABADI","authors":"Jeffrey Triguna, Bagus Mulyawan","doi":"10.24912/jiksi.v11i2.26020","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26020","url":null,"abstract":"Dashboard is design for CV Mirko Sejahtera Abadi aims to improve the sales performance of CV Mirko Sejahtera Abadi. Making the dashboard can make CV Mirko Sejahtera Abadi easier to know their sales every month and also, they sales performance every month. The design of this dashboard uses the Waterfall model System Development Life Cycle (SDLC) development methodology. The database used in this application is MySQL. The programming languages used are HTML and PHP.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88696458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aplikasi Monitoring Tunggakan Uang Kuliah Mahasiswa Non Aktif Di Universitas Tarumanagara Menggunakan Metode Naive Bayes 该应用程序监测塔鲁马纳加拉大学不活跃学生的学费欠款,使用的是“天真贝耶”方法
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26005
Timothy Reynaldi, Lely Hiryanto, Darius Andana Haris
Universitas Tarumanagara memiliki dua status mahsiswa, yaitu mahasiswa aktif dan mahasiswa non aktif. Saat ini, bidang administrasi di Universitas Tarumanagara belum memiliki sistem yang baik untuk menangani tunggakan uang kuliah dari mahasiswa non aktif. Tujuan dari perancangan Aplikasi Monitoring Tunggakan Uang Kuliah Mahasiswa Non Aktif ini adalah untuk memperbaiki dan memudahkan user untuk memonitoring tunggakan uang kuliah dari mahasiswa non aktif di Universitas Tarumanagara. Aplikasi ini menggunakan metode Naive Bayes. Penerapan dari metode Naive Bayes ini berfungsi untuk menghitung probabilitas kemungkinan mahasiswa Universitas Tarumanaga yang non aktif selama tiga semester berturut-turut harus di keluarkan atau tidak. Hasil dari penerapan metode Naive Bayes ini berhasil untuk menampilkan output prediksi untuk dikeluarkan atau dilanjutkannya mahasiswa yang sudah non aktif selama tiga semester berturut-turut. Hasil dari pengujian fungsional aplikasi menggunakan mendapatkan output sukses untuk pengetesan pada semua halaman yang di uji dan metode pengambilan keputusan dari aplikasi ini memiliki akurasi untuk prediksi tindakan pengambilan keputusan sebesar 91%.
塔鲁马纳加拉大学有两个学生身份,一个是活跃的学生,一个是不活跃的学生。目前,塔鲁马纳加拉大学的行政部门还没有一个好系统来处理非活跃学生的学费滞纳金。这项设计的非活动学生学费拖欠的目的是修复和允许用户监控塔鲁马纳加拉大学非活跃学生的学费滞纳金。该应用程序使用天真的Bayes方法。这种天真贝斯方法的应用是计算塔鲁马纳加大学非活跃学生连续三个学期的概率。这种天真的贝斯方法的应用成功地显示了一个预测输出,以便在一个连续三个学期不活跃的学生的发布或延续。应用程序的功能测试结果使用成功输出来测试本应用程序测试和决策方法的所有页面,其准确性为91%。
{"title":"Aplikasi Monitoring Tunggakan Uang Kuliah Mahasiswa Non Aktif Di Universitas Tarumanagara Menggunakan Metode Naive Bayes","authors":"Timothy Reynaldi, Lely Hiryanto, Darius Andana Haris","doi":"10.24912/jiksi.v11i2.26005","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26005","url":null,"abstract":"Universitas Tarumanagara memiliki dua status mahsiswa, yaitu mahasiswa aktif dan mahasiswa non aktif. Saat ini, bidang administrasi di Universitas Tarumanagara belum memiliki sistem yang baik untuk menangani tunggakan uang kuliah dari mahasiswa non aktif. Tujuan dari perancangan Aplikasi Monitoring Tunggakan Uang Kuliah Mahasiswa Non Aktif ini adalah untuk memperbaiki dan memudahkan user untuk memonitoring tunggakan uang kuliah dari mahasiswa non aktif di Universitas Tarumanagara. Aplikasi ini menggunakan metode Naive Bayes. Penerapan dari metode Naive Bayes ini berfungsi untuk menghitung probabilitas kemungkinan mahasiswa Universitas Tarumanaga yang non aktif selama tiga semester berturut-turut harus di keluarkan atau tidak. Hasil dari penerapan metode Naive Bayes ini berhasil untuk menampilkan output prediksi untuk dikeluarkan atau dilanjutkannya mahasiswa yang sudah non aktif selama tiga semester berturut-turut. Hasil dari pengujian fungsional aplikasi menggunakan mendapatkan output sukses untuk pengetesan pada semua halaman yang di uji dan metode pengambilan keputusan dari aplikasi ini memiliki akurasi untuk prediksi tindakan pengambilan keputusan sebesar 91%.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84719145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rancang Bangun Dashboard Penjualan pada PT. XYZ dengan Microsoft PowerBI
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26028
Monica Saputra, Tony
One of the most popular and most widely used technologies among people today is the internet. Starting from studying, shopping, working, doing business, communicating, everything can be accessed only by using the internet or in other words referred to as online activities. People are now trying to expand their business online, one of which is PT. XYZ. This company is a retail company that has an online and offline distribution system and sells power tools and household appliances. This company already has an application-based system. Therefore, the dashboard design for this company will be used to provide a summary of sales for three months from tokopedia, shoppe, lazada and tiktok shop to make it easier for company leaders to make decisions. The data collection method was carried out by interviewing and dashboard design using the prototyping method. This design will produce a dashboard using the Microsoft PowerBI Desktop application which can provide visual information about PT.XYZ's sales data.
当今最受欢迎和最广泛使用的技术之一是互联网。从学习、购物、工作、做生意、交流开始,一切都只能通过使用互联网或换句话说,被称为在线活动。人们现在正试图扩大他们的在线业务,其中之一就是PT. XYZ。该公司是一家零售公司,拥有在线和离线分销系统,销售电动工具和家用电器。这家公司已经有了一个基于应用程序的系统。因此,该公司的仪表盘设计将用于提供tokopedia, shoppe, lazada和tiktok商店三个月的销售汇总,以便公司领导更容易做出决策。数据收集方法采用访谈法,仪表板设计采用原型法。这个设计将使用Microsoft PowerBI Desktop应用程序生成一个仪表板,它可以提供关于PT.XYZ销售数据的可视化信息。
{"title":"Rancang Bangun Dashboard Penjualan pada PT. XYZ dengan Microsoft PowerBI","authors":"Monica Saputra, Tony","doi":"10.24912/jiksi.v11i2.26028","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26028","url":null,"abstract":"One of the most popular and most widely used technologies among people today is the internet. Starting from studying, shopping, working, doing business, communicating, everything can be accessed only by using the internet or in other words referred to as online activities. People are now trying to expand their business online, one of which is PT. XYZ. This company is a retail company that has an online and offline distribution system and sells power tools and household appliances. This company already has an application-based system. Therefore, the dashboard design for this company will be used to provide a summary of sales for three months from tokopedia, shoppe, lazada and tiktok shop to make it easier for company leaders to make decisions. The data collection method was carried out by interviewing and dashboard design using the prototyping method. This design will produce a dashboard using the Microsoft PowerBI Desktop application which can provide visual information about PT.XYZ's sales data.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82180742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PREDIKSI HARGA PANGAN KOTA BANDUNG MENGGUNAKAN METODE GATED RECURRENT UNIT 万隆食品价格预测使用了相关的单位
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26014
Matthew Oni, Manatap Dolok Lauro, Teny Handhayani
Food problems often occur among the community, this occurs due to a lack of predictions made to determine future food prices. Food prices can be achieved if the government can provide sufficient food supplies both in terms of quality and quantity. The availability of sufficient food is an important factor in maintaining the health and welfare of the community. However, the high price fluctuations of staple foods in traditional markets have a negative impact on the availability and quality of food for the community, especially those with low incomes. This was caused by various factors such as rising raw material prices, the influence of weather factors, and changes in people's consumption patterns. In addition, the process of distribution and marketing of staple foods in traditional markets in Bandung City, which still relies on manual processes and is less structured, can also cause high price fluctuations. Therefore we need an application to predict staple food needs for the future accurately and effectively. This study uses the Gated Recurrent Unit method. This method is used because the Gated Recurrent Unit method has good performance in making predictions and fits the data used for this study. In this study, there were 5 types of commodities used, namely rice, chicken meat, chicken eggs, shallots, and garlic. All datasets used were taken from the website of the National Strategic Food Price Information (PIHPSNasional, https://www.bi.go.id/hargapangan). Predictive results by evaluating MAE and MAPE for rice 12.8, and 0.10, for chicken meat 12.8 , and 0.10, for chicken egg 244.5, and 0.64, for onion 296.9, and 1.05, for garlic 602.8, and 1.32.
粮食问题经常在社区中发生,这是由于缺乏对未来粮食价格的预测。如果政府能够在质量和数量上提供足够的食品供应,食品价格是可以实现的。充足的食物供应是维持社会健康和福利的一个重要因素。然而,传统市场上主食价格的大幅波动对社区,特别是低收入群体的食物供应和质量产生了负面影响。这是由多种因素造成的,如原材料价格上涨、天气因素的影响以及人们消费模式的变化。此外,万隆市传统市场的主食分销和销售过程仍然依赖人工流程,结构较差,也可能导致价格大幅波动。因此,我们需要一个应用程序来准确有效地预测未来的主食需求。本研究采用门控循环单元方法。使用这种方法是因为门控循环单元方法在预测方面具有良好的性能,并且适合本研究使用的数据。在本研究中,使用了5种商品,分别是大米、鸡肉、鸡蛋、青葱和大蒜。所使用的所有数据集均取自国家粮食价格战略信息网站(PIHPSNasional, https://www.bi.go.id/hargapangan)。预测大米的MAE和MAPE分别为12.8和0.10,鸡肉的MAE和MAPE分别为12.8和0.10,鸡蛋的MAE和MAPE分别为244.5和0.64,洋葱的MAE和MAPE分别为296.9和1.05,大蒜的MAE和MAPE分别为602.8和1.32。
{"title":"PREDIKSI HARGA PANGAN KOTA BANDUNG MENGGUNAKAN METODE GATED RECURRENT UNIT","authors":"Matthew Oni, Manatap Dolok Lauro, Teny Handhayani","doi":"10.24912/jiksi.v11i2.26014","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26014","url":null,"abstract":"Food problems often occur among the community, this occurs due to a lack of predictions made to determine future food prices. Food prices can be achieved if the government can provide sufficient food supplies both in terms of quality and quantity. The availability of sufficient food is an important factor in maintaining the health and welfare of the community. However, the high price fluctuations of staple foods in traditional markets have a negative impact on the availability and quality of food for the community, especially those with low incomes. This was caused by various factors such as rising raw material prices, the influence of weather factors, and changes in people's consumption patterns. In addition, the process of distribution and marketing of staple foods in traditional markets in Bandung City, which still relies on manual processes and is less structured, can also cause high price fluctuations. Therefore we need an application to predict staple food needs for the future accurately and effectively. This study uses the Gated Recurrent Unit method. This method is used because the Gated Recurrent Unit method has good performance in making predictions and fits the data used for this study. In this study, there were 5 types of commodities used, namely rice, chicken meat, chicken eggs, shallots, and garlic. All datasets used were taken from the website of the National Strategic Food Price Information (PIHPSNasional, https://www.bi.go.id/hargapangan). Predictive results by evaluating MAE and MAPE for rice 12.8, and 0.10, for chicken meat 12.8 , and 0.10, for chicken egg 244.5, and 0.64, for onion 296.9, and 1.05, for garlic 602.8, and 1.32.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86425336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MANAJEMEN PROYEK PEMBUATAN DASHBOARD UNTUK VISUALISASI CURAH HUJAN DI JAKARTA 雅加达降水可视化仪表盘项目管理
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26035
Richard, Bagus Mulyawan
Project management is a way for organizing to  managing and completing projects from start to finish. Using weather data collected from BMKG to carry out data processing by creating a dashboard to display rainfall visualizations using Power BI. This methode research implements use the BI roadmap method. The purpose of this research is to be one of the ways to make decisions. The purpose of the results in this research, it is hoped that making a dashboard visualizations can be useful for users, namely everyone who needs weather information for outdoor activities.
项目管理是一种从头到尾组织、管理和完成项目的方法。使用从BMKG收集的天气数据进行数据处理,通过创建仪表板来使用Power BI显示降雨可视化。本方法研究采用BI路线图方法实现。这项研究的目的是作为决策的一种方法。本研究结果的目的,是希望制作一个仪表板可视化可以对用户有用,即每个需要户外活动天气信息的人。
{"title":"MANAJEMEN PROYEK PEMBUATAN DASHBOARD UNTUK VISUALISASI CURAH HUJAN DI JAKARTA","authors":"Richard, Bagus Mulyawan","doi":"10.24912/jiksi.v11i2.26035","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26035","url":null,"abstract":"Project management is a way for organizing to  managing and completing projects from start to finish. Using weather data collected from BMKG to carry out data processing by creating a dashboard to display rainfall visualizations using Power BI. This methode research implements use the BI roadmap method. The purpose of this research is to be one of the ways to make decisions. The purpose of the results in this research, it is hoped that making a dashboard visualizations can be useful for users, namely everyone who needs weather information for outdoor activities.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77708211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PERBANDINGAN LSTM DAN ELM DALAM MEMPREDIKSI HARGA PANGAN KOTA TASIKMALAYA LSTM和ELM之间的比较可以预测塔斯克马来亚市的食品价格
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26015
Andry Winata, Manatap Dolok Lauro, Teny Handhayani
Humans have needs that must be met, one of which is the need for food, but food prices often change. Factors that affect price changes occur because the amount of demand is high while the supply is small. Making predictions about price changes will be very helpful to get an idea of the pattern of price changes. Therefore making predictions from price patterns is useful for providing information to the public. Predictions regarding price changes can be made using many methods. Long Short-Term Memory (LSTM) and Extreme Learning Machine (ELM) are several methods that can be used to predict time series data, these two methods can provide an overview of the predictions made. The results of the study show that both algorithms have good results in terms of the the evaluation value. The evaluation results showed no significant difference between the two algorithms. The evaluation value of the rice commodity showed that ELM tended to be better with MAE values of 6,721, MAPE 0.061%, MSE 115,281, RMSE 10,737 and CV 3,699%, while LSTM with MAE 31,707, MAPE 0.286%, MSE 1927.633, RMSE 43.905 and CV 3.655%. However, for other commodities, LSTM can produce a better evaluation value.
人类有必须满足的需求,其中之一就是对食物的需求,但食物价格经常变化。影响价格变化的因素是因为需求量大而供给量小。对价格变化作出预测对了解价格变化的规律很有帮助。因此,根据价格模式进行预测对于向公众提供信息是有用的。关于价格变化的预测可以用许多方法进行。长短期记忆(LSTM)和极限学习机(ELM)是几种可以用来预测时间序列数据的方法,这两种方法可以提供所做预测的概述。研究结果表明,两种算法在评价价值方面都取得了较好的效果。评价结果显示两种算法之间无显著差异。大米商品的评价值表明,ELM的MAE值为6721,MAPE值为0.061%,MSE值为115281,RMSE值为10737,CV值为3699%,而LSTM的MAE值为31707,MAPE值为0.286%,MSE值为1927.633,RMSE值为43.905,CV值为3.655%。而对于其他商品,LSTM可以产生更好的评价值。
{"title":"PERBANDINGAN LSTM DAN ELM DALAM MEMPREDIKSI HARGA PANGAN KOTA TASIKMALAYA","authors":"Andry Winata, Manatap Dolok Lauro, Teny Handhayani","doi":"10.24912/jiksi.v11i2.26015","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26015","url":null,"abstract":"Humans have needs that must be met, one of which is the need for food, but food prices often change. Factors that affect price changes occur because the amount of demand is high while the supply is small. Making predictions about price changes will be very helpful to get an idea of the pattern of price changes. Therefore making predictions from price patterns is useful for providing information to the public. Predictions regarding price changes can be made using many methods. Long Short-Term Memory (LSTM) and Extreme Learning Machine (ELM) are several methods that can be used to predict time series data, these two methods can provide an overview of the predictions made. The results of the study show that both algorithms have good results in terms of the the evaluation value. The evaluation results showed no significant difference between the two algorithms. The evaluation value of the rice commodity showed that ELM tended to be better with MAE values of 6,721, MAPE 0.061%, MSE 115,281, RMSE 10,737 and CV 3,699%, while LSTM with MAE 31,707, MAPE 0.286%, MSE 1927.633, RMSE 43.905 and CV 3.655%. However, for other commodities, LSTM can produce a better evaluation value.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"282 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86739738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KLASIFIKASI HASIL BELAJAR SISWA MENGGUNAKAN METODE C4.5 BERDASARKAN RIWAYAT AKADEMIK DI SMP XYZ 根据XYZ初中的学术历史,学生使用C4.5方法对学习成绩进行分类
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26004
Bryan Daniel Pinenda Pasaribu, T. Sutrisno, Bagus Mulyawan
This research was conducted to classify student learning outcomes at XYZ Middle School based on academic history during learning and student learning interests. This study aims to provide information to students and teaching staff regarding student learning outcomes. With the available information, it is hoped that teaching staff can develop methods for conveying material in order to obtain better results. The method used in solving this problem is the C.45 algorithm method. Starting from collecting data consisting of assignment scores, daily tests, UTS, and UAS. Then the formation of a decision system as initial data that has condition and decision attribute values. Then calculate the entropy value of each attribute. Calculating the highest gain value which will then be used as a node. Then, determine the decision from the results of the decision tree process by starting from the highest root to the lowest root to determine the decision criteria.
本研究以XYZ中学学生学习期间的学术经历和学生的学习兴趣为基础,对学生的学习成果进行分类。本研究旨在为学生和教师提供有关学生学习成果的信息。在现有的信息基础上,希望教学人员能够制定出更好的材料传递方法,以获得更好的效果。解决这一问题的方法是C.45算法方法。从收集作业分数、日常测试、UTS和UAS数据开始。然后形成一个具有条件值和决策属性值的决策系统初始数据。然后计算各属性的熵值。计算最高增益值,然后将其用作节点。然后,从决策树过程的结果中确定决策,从最高根到最低根确定决策标准。
{"title":"KLASIFIKASI HASIL BELAJAR SISWA MENGGUNAKAN METODE C4.5 BERDASARKAN RIWAYAT AKADEMIK DI SMP XYZ","authors":"Bryan Daniel Pinenda Pasaribu, T. Sutrisno, Bagus Mulyawan","doi":"10.24912/jiksi.v11i2.26004","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26004","url":null,"abstract":"This research was conducted to classify student learning outcomes at XYZ Middle School based on academic history during learning and student learning interests. This study aims to provide information to students and teaching staff regarding student learning outcomes. With the available information, it is hoped that teaching staff can develop methods for conveying material in order to obtain better results. The method used in solving this problem is the C.45 algorithm method. Starting from collecting data consisting of assignment scores, daily tests, UTS, and UAS. Then the formation of a decision system as initial data that has condition and decision attribute values. Then calculate the entropy value of each attribute. Calculating the highest gain value which will then be used as a node. Then, determine the decision from the results of the decision tree process by starting from the highest root to the lowest root to determine the decision criteria.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77286534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PREDIKSI CURAH HUJAN DI KABUPATEN BADUNG, BALI MENGGUNAKAN METODE LONG SHORT-TERM MEMORY 对巴东地区降雨的预测使用了短期记忆的方法
Pub Date : 2023-08-23 DOI: 10.24912/jiksi.v11i2.26002
Brando Dharma Saputra, Lely Hiryanto, Teny Handhayani
Rainfall is the height of rainwater that falls on a flat area, assuming it doesn't evaporate, doesn't seep, and doesn't flow. Rain levels are measured in mm (millimeters). The target of the research being conducted is in Badung Regency, Bali because Bali is a tourist area that is often visited by tourists and from Indonesian itself, so predictions of meteorology, such as rainfall will greatly impact tourism. In this test, predictions use the Long Short Term Memory (LSTM) method, using daily weather data from the BMKG from 2010 to 2020 as training data and daily weather data for 2021 as prediction data. Based on the test results above, the results show that the two LSTM tests with LSTM Model 128.64 and LSTM Model 64.32 have low MAE and MAPE error values. From First Scenario, the Mean Absolute Error (MAE) value is 8.97246598930908 and Mean Absolute Percentage Error (MAPE) value is 1.7657206683278308%. From Second Scenario, the Mean Absolute Error is 9.706669940783014 and Mean Absolute Percentage Error is 1.9028466692362323%. From the MAE and MAPE values obtained in these two scenarios, it can be proven that from the evaluation results of Rainfall predictions in Badung Regency, Bali, the predictions can be said to be very accurate because they have an error value of less than 10.
降雨是落在平坦地区的雨水的高度,假设它不蒸发,不渗漏,也不流动。降雨量以毫米为单位。正在进行的研究的目标是巴厘的巴东摄政,因为巴厘是一个旅游区,经常有来自印度尼西亚的游客访问,所以气象的预测,如降雨将极大地影响旅游业。在本次测试中,预测使用长短期记忆(LSTM)方法,使用BMKG 2010年至2020年的每日天气数据作为训练数据,2021年的每日天气数据作为预测数据。综合以上测试结果,结果表明LSTM模型128.64和LSTM模型64.32的两个LSTM测试具有较低的MAE和MAPE误差值。从第一个场景来看,平均绝对误差(MAE)值为8.97246598930908,平均绝对百分比误差(MAPE)值为1.7657206683278308%。从第二个场景来看,平均绝对误差为9.706669940783014,平均绝对百分比误差为1.9028466692362323%。从这两种情景下得到的MAE和MAPE值可以证明,从巴厘巴东摄政降水预测的评价结果来看,预测的误差值小于10,可以说是非常准确的。
{"title":"PREDIKSI CURAH HUJAN DI KABUPATEN BADUNG, BALI MENGGUNAKAN METODE LONG SHORT-TERM MEMORY","authors":"Brando Dharma Saputra, Lely Hiryanto, Teny Handhayani","doi":"10.24912/jiksi.v11i2.26002","DOIUrl":"https://doi.org/10.24912/jiksi.v11i2.26002","url":null,"abstract":"Rainfall is the height of rainwater that falls on a flat area, assuming it doesn't evaporate, doesn't seep, and doesn't flow. Rain levels are measured in mm (millimeters). The target of the research being conducted is in Badung Regency, Bali because Bali is a tourist area that is often visited by tourists and from Indonesian itself, so predictions of meteorology, such as rainfall will greatly impact tourism. In this test, predictions use the Long Short Term Memory (LSTM) method, using daily weather data from the BMKG from 2010 to 2020 as training data and daily weather data for 2021 as prediction data. Based on the test results above, the results show that the two LSTM tests with LSTM Model 128.64 and LSTM Model 64.32 have low MAE and MAPE error values. From First Scenario, the Mean Absolute Error (MAE) value is 8.97246598930908 and Mean Absolute Percentage Error (MAPE) value is 1.7657206683278308%. From Second Scenario, the Mean Absolute Error is 9.706669940783014 and Mean Absolute Percentage Error is 1.9028466692362323%. From the MAE and MAPE values obtained in these two scenarios, it can be proven that from the evaluation results of Rainfall predictions in Badung Regency, Bali, the predictions can be said to be very accurate because they have an error value of less than 10.","PeriodicalId":34309,"journal":{"name":"Jurnal Sisfokom","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82613644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Jurnal Sisfokom
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1