Urban geographers, planners, and economists have long been studying urban spatial structure to understand the development of cities. Statistical and data mining techniques, as proposed in this paper, go a long way in improving our knowledge about human activities extracted from travel surveys. As of today, most urban simulators have not yet incorporated the various types of individuals by their daily activities. In this work, we detect clusters of individuals by daily activity patterns, integrated with their usage of space and time, and show that daily routines can be highly predictable, with clear differences depending on the group, e.g. students vs. part time workers. This analysis presents the basis to capture collective activities at large scales and expand our perception of urban structure from the spatial dimension to spatial-temporal dimension. It will be helpful for planers to understand how individuals utilize time and interact with urban space in metropolitan areas and crucial for the design of sustainable cities in the future.
{"title":"Discovering urban spatial-temporal structure from human activity patterns","authors":"Shan Jiang, J. Ferreira, Marta C. González","doi":"10.1145/2346496.2346512","DOIUrl":"https://doi.org/10.1145/2346496.2346512","url":null,"abstract":"Urban geographers, planners, and economists have long been studying urban spatial structure to understand the development of cities. Statistical and data mining techniques, as proposed in this paper, go a long way in improving our knowledge about human activities extracted from travel surveys. As of today, most urban simulators have not yet incorporated the various types of individuals by their daily activities. In this work, we detect clusters of individuals by daily activity patterns, integrated with their usage of space and time, and show that daily routines can be highly predictable, with clear differences depending on the group, e.g. students vs. part time workers. This analysis presents the basis to capture collective activities at large scales and expand our perception of urban structure from the spatial dimension to spatial-temporal dimension. It will be helpful for planers to understand how individuals utilize time and interact with urban space in metropolitan areas and crucial for the design of sustainable cities in the future.","PeriodicalId":350527,"journal":{"name":"UrbComp '12","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134557958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jameson L. Toole, M. Ulm, D. Bauer, Marta C. González
Understanding the spatiotemporal distribution of people within a city is crucial to many planning applications. Obtaining data to create required knowledge, currently involves costly survey methods. At the same time ubiquitous mobile sensors from personal GPS devices to mobile phones are collecting massive amounts of data on urban systems. The locations, communications, and activities of millions of people are recorded and stored by new information technologies. This work utilizes novel dynamic data, generated by mobile phone users, to measure spatiotemporal changes in population. In the process, we identify the relationship between land use and dynamic population over the course of a typical week. A machine learning classification algorithm is used to identify clusters of locations with similar zoned uses and mobile phone activity patterns. It is shown that the mobile phone data is capable of delivering useful information on actual land use that supplements zoning regulations.
{"title":"Inferring land use from mobile phone activity","authors":"Jameson L. Toole, M. Ulm, D. Bauer, Marta C. González","doi":"10.1145/2346496.2346498","DOIUrl":"https://doi.org/10.1145/2346496.2346498","url":null,"abstract":"Understanding the spatiotemporal distribution of people within a city is crucial to many planning applications. Obtaining data to create required knowledge, currently involves costly survey methods. At the same time ubiquitous mobile sensors from personal GPS devices to mobile phones are collecting massive amounts of data on urban systems. The locations, communications, and activities of millions of people are recorded and stored by new information technologies. This work utilizes novel dynamic data, generated by mobile phone users, to measure spatiotemporal changes in population. In the process, we identify the relationship between land use and dynamic population over the course of a typical week. A machine learning classification algorithm is used to identify clusters of locations with similar zoned uses and mobile phone activity patterns. It is shown that the mobile phone data is capable of delivering useful information on actual land use that supplements zoning regulations.","PeriodicalId":350527,"journal":{"name":"UrbComp '12","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124728355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}