Pub Date : 2024-10-18DOI: 10.1016/j.jcis.2024.10.087
Reasonably constructing nanocomposite photocatalysts with fast charge transfer and broad solar response capabilities is significant for efficiently converting solar energy into chemical energy. Cu modifies P25/CeO2 heterojunctions prepared by photodeposition (P25 is commercial TiO2). The local surface plasmon resonance (LSPR) effect caused by Cu nanoparticles broadens the spectral response range and generates significant photothermal effects. After 90 s of irradiation, the temperature of 9.5 %Cu-P25/CeO2 increases to 148.1 °C. The photocatalytic hydrogen evolution rate (HER) of 9.5 %Cu-P25/CeO2 under visible light (λ = 400 nm) reaches 1538.2 μmol h−1 g−1, which is 158.6 times, 17.7 times, and 2.5 times higher than that of Cerium dioxide (CeO2), P25, and P25/CeO2, respectively. This catalyst has stronger light absorption, easier carrier transfer, and separation. This study guides the construction of efficient hydrogen evolution photocatalysts.
{"title":"Cu surface plasmon resonance promoted charge transfer in S-scheme system enhanced visible light photocatalytic hydrogen evolution","authors":"","doi":"10.1016/j.jcis.2024.10.087","DOIUrl":"10.1016/j.jcis.2024.10.087","url":null,"abstract":"<div><div>Reasonably constructing nanocomposite photocatalysts with fast charge transfer and broad solar response capabilities is significant for efficiently converting solar energy into chemical energy. Cu modifies P25/CeO<sub>2</sub> heterojunctions prepared by photodeposition (P25 is commercial TiO<sub>2</sub>). The local surface plasmon resonance (LSPR) effect caused by Cu nanoparticles broadens the spectral response range and generates significant photothermal effects. After 90 s of irradiation, the temperature of 9.5 %Cu-P25/CeO<sub>2</sub> increases to 148.1 °C. The photocatalytic hydrogen evolution rate (HER) of 9.5 %Cu-P25/CeO<sub>2</sub> under visible light (λ = 400 nm) reaches 1538.2 μmol h<sup>−1</sup> g<sup>−1</sup>, which is 158.6 times, 17.7 times, and 2.5 times higher than that of Cerium dioxide (CeO<sub>2</sub>), P25, and P25/CeO<sub>2</sub>, respectively. This catalyst has stronger light absorption, easier carrier transfer, and separation. This study guides the construction of efficient hydrogen evolution photocatalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.jcis.2024.10.063
This review is devoted to the potential advantages of ordered alloy catalysts in proton exchange membrane fuel cells (PEMFCs), specifically focusing on the development of the low Pt content, high activity, and durability ordered PtCo3 catalyst. Due to the sluggish oxygen reduction reaction (ORR) kinetics and poor durability, the overall performance of the fuel cell is affected, and its application and promotion are limited. To address this issue, researchers have explored various synthetic strategies, such as element doping, morphology adjusting, structure controlling, ordering and support/metal interaction enhancement. This article extensively discussed the Pt related ORR catalysts and follows an in-depth analysis of ordered PtCo3. The introduction briefly discusses the direction of development of fuel cell catalysts and frontier progress, including theoretical mechanism, practical preparation, and Pt-containing electrode structures, etc. The subsequent chapter focuses on the Pt-Co catalyst, the evolution process of Pt alloy to Pt-Co alloy and the improvement scheme are introduced. The next chapter describes the properties of PtCo3. Although the ordered PtCo3 catalyst has a wide range of applicability due to low cost and high activity catalyst. However, besides the common agglomeration and sintering problems of Pt-Co alloy, its commercial application still faces unique problems of oversized crystal size, phase segregation, ordering transformation and transition metal dissolution. Therefore, in Chapter 4, this overview provides some possible improvement methods for three specific functions: crystal refinement, enhancing the effect of support and active substances, and anti-dissolution.
{"title":"A review of ordered PtCo3 catalyst with higher oxygen reduction reaction activity in proton exchange membrane fuel cells","authors":"","doi":"10.1016/j.jcis.2024.10.063","DOIUrl":"10.1016/j.jcis.2024.10.063","url":null,"abstract":"<div><div>This review is devoted to the potential advantages of ordered alloy catalysts in proton exchange membrane fuel cells (PEMFCs), specifically focusing on the development of the low Pt content, high activity, and durability ordered PtCo<sub>3</sub> catalyst. Due to the sluggish oxygen reduction reaction (ORR) kinetics and poor durability, the overall performance of the fuel cell is affected, and its application and promotion are limited. To address this issue, researchers have explored various synthetic strategies, such as element doping, morphology adjusting, structure controlling, ordering and support/metal interaction enhancement. This article extensively discussed the Pt related ORR catalysts and follows an in-depth analysis of ordered PtCo<sub>3</sub>. The introduction briefly discusses the direction of development of fuel cell catalysts and frontier progress, including theoretical mechanism, practical preparation, and Pt-containing electrode structures, etc. The subsequent chapter focuses on the Pt-Co catalyst, the evolution process of Pt alloy to Pt-Co alloy and the improvement scheme are introduced. The next chapter describes the properties of PtCo<sub>3</sub>. Although the ordered PtCo<sub>3</sub> catalyst has a wide range of applicability due to low cost and high activity catalyst. However, besides the common agglomeration and sintering problems of Pt-Co alloy, its commercial application still faces unique problems of oversized crystal size, phase segregation, ordering transformation and transition metal dissolution. Therefore, in Chapter 4, this overview provides some possible improvement methods for three specific functions: crystal refinement, enhancing the effect of support and active substances, and anti-dissolution.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.jcis.2024.10.083
Advancing nanocomposites requires a deep understanding and careful design of nanoscale interfaces, as interfacial interactions and adhesion significantly influence the physical and mechanical properties of these materials. This study demonstrates the effectiveness of lignin nanoparticles (LNPs) as interfacial compatibilizer between hydrophilic cellulose nanofibrils (CNF) and a hydrophobic polyester, polycaprolactone (PCL). In this context, we conducted a detailed analysis of surface-to-bulk interactions in both wet and dry conditions using advanced techniques such as quartz crystal microbalance with dissipation (QCM-D), atomic force microscopy (AFM), water contact angle (WCA) measurements, broadband dielectric spectroscopy (BDS), and inverse gas chromatography (IGC).
QCM-D was employed to quantify the adsorption behavior of LNPs on CNF and PCL surfaces, demonstrating LNPs’ capability to interact with both hydrophilic and hydrophobic phases, thereby enhancing composite material properties. LNPs showed extensive adsorption on a CNF model film (1186 ± 178 ng.cm−2) and a lower but still significant adsorption on a PCL model film (270 ± 64 ng.cm−2). In contrast, CNF adsorption on a PCL model film was the lowest, with a sensed mass of only 136 ± 35 ng.cm−2. These findings were further supported by comparing the morphology and wettability of the films before and after adsorption, using AFM and WCA analyses. Then, to gain insights into the molecular-level interactions and molecular mobility within the composite in dry state, BDS was employed. The BDS results showed that LNPs improved the dispersion of PCL within the CNF network. To further investigate the impact of LNPs on the composites’ interfacial properties, IGC was employed. This analysis showed that the composite films containing LNPs exhibited lower surface energy compared to those composed of only CNF and PCL. The presence of LNPs likely reduced the availability of surface hydroxyl groups, thus modifying the physicochemical properties of the interface. These changes were particularly evident in the heterogeneity of the surface energy profile, indicating that LNPs significantly altered the interfacial characteristics of the composite materials.
Overall, these findings emphasize the necessity to control the interfaces between components for next-generation nanocomposite materials across diverse applications.
{"title":"The role of lignin as interfacial compatibilizer in designing lignocellulosic-polyester composite films","authors":"","doi":"10.1016/j.jcis.2024.10.083","DOIUrl":"10.1016/j.jcis.2024.10.083","url":null,"abstract":"<div><div>Advancing nanocomposites requires a deep understanding and careful design of nanoscale interfaces, as interfacial interactions and adhesion significantly influence the physical and mechanical properties of these materials. This study demonstrates the effectiveness of lignin nanoparticles (LNPs) as interfacial compatibilizer between hydrophilic cellulose nanofibrils (CNF) and a hydrophobic polyester, polycaprolactone (PCL). In this context, we conducted a detailed analysis of surface-to-bulk interactions in both wet and dry conditions using advanced techniques such as quartz crystal microbalance with dissipation (QCM-D), atomic force microscopy (AFM), water contact angle (WCA) measurements, broadband dielectric spectroscopy (BDS), and inverse gas chromatography (IGC).</div><div>QCM-D was employed to quantify the adsorption behavior of LNPs on CNF and PCL surfaces, demonstrating LNPs’ capability to interact with both hydrophilic and hydrophobic phases, thereby enhancing composite material properties. LNPs showed extensive adsorption on a CNF model film (1186 ± 178 ng.cm<sup>−2</sup>) and a lower but still significant adsorption on a PCL model film (270 ± 64 ng.cm<sup>−2</sup>). In contrast, CNF adsorption on a PCL model film was the lowest, with a sensed mass of only 136 ± 35 ng.cm<sup>−2</sup>. These findings were further supported by comparing the morphology and wettability of the films before and after adsorption, using AFM and WCA analyses. Then, to gain insights into the molecular-level interactions and molecular mobility within the composite in dry state, BDS was employed. The BDS results showed that LNPs improved the dispersion of PCL within the CNF network. To further investigate the impact of LNPs on the composites’ interfacial properties, IGC was employed. This analysis showed that the composite films containing LNPs exhibited lower surface energy compared to those composed of only CNF and PCL. The presence of LNPs likely reduced the availability of surface hydroxyl groups, thus modifying the physicochemical properties of the interface. These changes were particularly evident in the heterogeneity of the surface energy profile, indicating that LNPs significantly altered the interfacial characteristics of the composite materials.</div><div>Overall, these findings emphasize the necessity to control the interfaces between components for next-generation nanocomposite materials across diverse applications.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.jcis.2024.10.081
Metal selenides are very promising anode materials for sodium ion batteries (SIBs) due to their rich redox behaviors, low cost, high theoretical capacity, and environmentally benign. However, the poor cycle performance and rate capability greatly hinder their widespread applications. In this paper, we have proposed a tannic acid etching zeolitic imidazolate framework-67 (ZIF-67)-derived selenide strategy to construct hollow heterogeneous CoSe2-FeSe2@N-doped carbon rhombic dodecahedron (CoSe2-FeSe2@NC) as anode for high-performance SIBs. The special microstructural characteristics with hollow rhombic dodecahedron can reduce the Na+/electron migration path and alleviate the volume variations during cycling. The NC can improve conductivity and reduce volume effects during cycling. What’s more, the built-in electric fields (BIEF) at the CoSe2-FeSe2 heterointerfaces can modulate the electronic structure and accelerate the kinetics of ionic diffusion, resulting in the improvement electrochemical properties. When applied as anodes for SIBs, the CoSe2-FeSe2@NC can deliver a remarkable electrochemical performance in terms of sodium storage capacity (648.5 mAh g−1 at 0.2 A/g), initial coulombic efficiency (82.0 %), cycle performance (92.6 % capacity retention after 100 cycles), and rate capability of 450.6 mAh g−1 after 1000 cycles at a high rate of 1 A/g. The kinetic analysis indicates that the discharging-charging process of CoSe2-FeSe2@NC is ascribed to both capacitive behavior and controlled diffusion.
{"title":"Tannic acid etching construction of hollow heterogeneous CoSe2-FeSe2@nitrogen-doped carbon rhombic dodecahedron for high-performance sodium storage","authors":"","doi":"10.1016/j.jcis.2024.10.081","DOIUrl":"10.1016/j.jcis.2024.10.081","url":null,"abstract":"<div><div>Metal selenides are very promising anode materials for sodium ion batteries (SIBs) due to their rich redox behaviors, low cost, high theoretical capacity, and environmentally benign. However, the poor cycle performance and rate capability greatly hinder their widespread applications. In this paper, we have proposed a tannic acid etching zeolitic imidazolate framework-67 (ZIF-67)-derived selenide strategy to construct hollow heterogeneous CoSe<sub>2</sub>-FeSe<sub>2</sub>@<em>N</em>-doped carbon rhombic dodecahedron (CoSe<sub>2</sub>-FeSe<sub>2</sub>@NC) as anode for high-performance SIBs. The special microstructural characteristics with hollow rhombic dodecahedron can reduce the Na<sup>+</sup>/electron migration path and alleviate the volume variations during cycling. The NC can improve conductivity and reduce volume effects during cycling. What’s more, the built-in electric fields (BIEF) at the CoSe<sub>2</sub>-FeSe<sub>2</sub> heterointerfaces can modulate the electronic structure and accelerate the kinetics of ionic diffusion, resulting in the improvement electrochemical properties. When applied as anodes for SIBs, the CoSe<sub>2</sub>-FeSe<sub>2</sub>@NC can deliver a remarkable electrochemical performance in terms of sodium storage capacity (648.5 mAh g<sup>−1</sup> at 0.2 A/g), initial coulombic efficiency (82.0 %), cycle performance (92.6 % capacity retention after 100 cycles), and rate capability of 450.6 mAh g<sup>−1</sup> after 1000 cycles at a high rate of 1 A/g. The kinetic analysis indicates that the discharging-charging process of CoSe<sub>2</sub>-FeSe<sub>2</sub>@NC is ascribed to both capacitive behavior and controlled diffusion.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.jcis.2024.10.068
The growing demand of novel hybrid organic/inorganic systems with exciting properties has contributed to an increasing need for simplifying production strategies. Here, we report a simple method to obtain controlled three-dimensional hybrid architectures, in particular hybrid supracolloids (hSC), formed by gold nanoparticles and a double hydrophilic block copolymer, specifically the poly(acrylic acid)-block-poly(N-vinyl-2-pyrrolidone) (PAA-b-PVP), directly in aqueous medium. The ubiquitous pH-sensitive poly(acrylic acid) (PAA) block initiates the assembly through pH changes, while the poly(N-vinyl-2-pyrrolidone) block assures the close affinity with the AuNPs. We demonstrate that the formation of hybrid supracolloids (hSC) is the result of the synergetic behavior of the two specific polymeric blocks. Additionally, the entire process shows spontaneous and fast switchability. The nanostructured copolymer behaves like a highly swollen hydrogel and displays a disordered internal structure. The driving force for the association of the copolymer chains is induced by the synergetic effects of the decrease in solubility of the poly(acrylic acid) block and the formation of inter and intra chains hydrogen bonds. These were demonstrated by using small angle X-ray scattering (SAXS), quartz crystal microbalance with dissipation monitoring (QCM-D) and scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (STEM-EDX). In turn, the AuNPs are randomly spread all over the polymeric matrix, as demonstrated by field emission gun – scanning electron microscopy (FEG-SEM). A correlation analysis reveals the hSC density depends mostly on the initial concentration of AuNPs. These results can inspire the fabrication of more complex structures with multicomponent composition.
对具有令人兴奋的特性的新型有机/无机杂化体系的需求日益增长,这促使对简化生产策略的需求与日俱增。在此,我们报告了一种在水介质中直接获得可控三维杂化体系结构,特别是由金纳米粒子和双亲水嵌段共聚物(特别是聚(丙烯酸)-嵌段-聚(N-乙烯基-2-吡咯烷酮)(PAA-b-PVP))形成的杂化超球体(hSC)的简单方法。无处不在的对 pH 值敏感的聚(丙烯酸)(PAA)嵌段通过 pH 值变化启动组装,而聚(N-乙烯基-2-吡咯烷酮)嵌段则确保了与 AuNPs 的紧密亲和性。我们证明,杂化超胶体(hSC)的形成是两种特定聚合物嵌段协同作用的结果。此外,整个过程显示出自发和快速的可切换性。纳米结构共聚物的行为类似于高度膨胀的水凝胶,并显示出无序的内部结构。共聚物链结合的驱动力来自于聚丙烯酸嵌段溶解度的降低以及链间和链内氢键的形成所产生的协同效应。小角 X 射线散射(SAXS)、石英晶体微天平耗散监测(QCM-D)和扫描透射电子显微镜耦合能量色散 X 射线光谱(STEM-EDX)证明了这一点。反过来,场发射枪-扫描电子显微镜(FEG-SEM)也证明了 AuNPs 在聚合物基质中的随机分布。相关分析表明,hSC 密度主要取决于 AuNPs 的初始浓度。这些结果可以启发人们制造具有多组分成分的更复杂结构。
{"title":"Easy reversible clustering of gold nanoparticles via pH-Induced assembly of PVP-b-PAA copolymer","authors":"","doi":"10.1016/j.jcis.2024.10.068","DOIUrl":"10.1016/j.jcis.2024.10.068","url":null,"abstract":"<div><div>The growing demand of novel hybrid organic/inorganic systems with exciting properties has contributed to an increasing need for simplifying production strategies. Here, we report a simple method to obtain controlled three-dimensional hybrid architectures, in particular hybrid supracolloids (hSC), formed by gold nanoparticles and a double hydrophilic block copolymer, specifically the poly(acrylic acid)-<em>block</em>-poly(<em>N</em>-vinyl-2-pyrrolidone) (PAA-<em>b</em>-PVP), directly in aqueous medium. The ubiquitous pH-sensitive poly(acrylic acid) (PAA) block initiates the assembly through pH changes, while the poly(<em>N</em>-vinyl-2-pyrrolidone) block assures the close affinity with the AuNPs. We demonstrate that the formation of hybrid supracolloids (hSC) is the result of the synergetic behavior of the two specific polymeric blocks. Additionally, the entire process shows spontaneous and fast switchability. The nanostructured copolymer behaves like a highly swollen hydrogel and displays a disordered internal structure. The driving force for the association of the copolymer chains is induced by the synergetic effects of the decrease in solubility of the poly(acrylic acid) block and the formation of inter and intra chains hydrogen bonds. These were demonstrated by using small angle X-ray scattering (SAXS), quartz crystal microbalance with dissipation monitoring (QCM-D) and scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (STEM-EDX). In turn, the AuNPs are randomly spread all over the polymeric matrix, as demonstrated by field emission gun – scanning electron microscopy (FEG-SEM). A correlation analysis reveals the hSC density depends mostly on the initial concentration of AuNPs. These results can inspire the fabrication of more complex structures with multicomponent composition.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.jcis.2024.10.072
The increasingly intricate electromagnetic environment necessitates higher anti-electromagnetic interference capabilities for electronic devices, thereby demanding a flexible absorbing material that can adapt to multiple forms, is lightweight, and exhibits excellent electromagnetic wave (EMW) absorption properties. In this study, we have developed a novel flexible absorbing material (FAM) based on glass-coated amorphous magnetic fibers (SFs) and Dallenbach-like absorbing structures through wet forming technology. By combining high-performance absorbing fiber with textile structures, the FAM demonstrates EMW absorption performance along with lightweight flexibility and shape adaptability. This paper explores the influence of process parameters in wet forming technology on FAM formation; as well as examines the construction of broadband absorbers through structural optimization. A single-layer FAM with a thickness of 1.7 mm (SFs length 8 mm, content 3 g/m2) achieves an impressive reflection loss (RL) value of −60.1 dB at 11.6 GHz. Furthermore, optimized multi-layer FAM attains effective absorption bandwidth (EAB: RL ≤ −5 dB) across a wide range from 3 to 14 GHz. This work presents a new approach for developing ’lightweight, thin, wide, and strong’ absorbing materials based on fiber and textile structures which holds significant implications for civilian electromagnetic interference protection as well as military electromagnetic stealth technology.
{"title":"One-step fabrication of a novel fiber-based absorber for flexible, tunable and boosted microwave absorption","authors":"","doi":"10.1016/j.jcis.2024.10.072","DOIUrl":"10.1016/j.jcis.2024.10.072","url":null,"abstract":"<div><div>The increasingly intricate electromagnetic environment necessitates higher anti-electromagnetic interference capabilities for electronic devices, thereby demanding a flexible absorbing material that can adapt to multiple forms, is lightweight, and exhibits excellent electromagnetic wave (EMW) absorption properties. In this study, we have developed a novel flexible absorbing material (FAM) based on glass-coated amorphous magnetic fibers (SFs) and Dallenbach-like absorbing structures through wet forming technology. By combining high-performance absorbing fiber with textile structures, the FAM demonstrates EMW absorption performance along with lightweight flexibility and shape adaptability. This paper explores the influence of process parameters in wet forming technology on FAM formation; as well as examines the construction of broadband absorbers through structural optimization. A single-layer FAM with a thickness of 1.7 mm (SFs length 8 mm, content 3 g/m<sup>2</sup>) achieves an impressive reflection loss (RL) value of −60.1 dB at 11.6 GHz. Furthermore, optimized multi-layer FAM attains effective absorption bandwidth (EAB: RL ≤ −5 dB) across a wide range from 3 to 14 GHz. This work presents a new approach for developing ’lightweight, thin, wide, and strong’ absorbing materials based on fiber and textile structures which holds significant implications for civilian electromagnetic interference protection as well as military electromagnetic stealth technology.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.jcis.2024.10.086
Seawater electrolysis taking advantage of coastal/offshore areas is acknowledged as a potential way of large-scale producing H2 to substitute traditional technology. However, anodic catalysts with high overpotentials and limited lifespans (caused by chloride-induced competitive chemical reactions) hinder the system of seawater electrolysis for H2 production. Herein, we present a citrate anion (CA) modified NiFe layered double hydroxide nanosheet array on nickel foam (NiFe LDH@NiFe-CA/NF), which serves as an efficient and stable electrocatalyst towards long-term alkaline seawater oxidation. It requires only a low overpotential of 387 mV to achieve a current density of 1000 mA cm−2, outperforming NiFe LDH/NF (414 mV). Moreover, NiFe LDH@NiFe-CA/NF exhibits continuous oxygen evolution testing for 300 h at 1000 mA cm−2 due to its anti-corrosion characterization. Additionally, the fabricated cell can stably operate at 300 mA cm−2 (60 °C, 6 M KOH + seawater) and only require 1.69 V, achieving low energy consumption of seawater splitting.
利用沿海/近海地区的优势进行海水电解,被认为是大规模生产 H2 以替代传统技术的一种潜在方法。然而,阳极催化剂过电位高、寿命有限(由氯离子引起的竞争性化学反应造成),阻碍了海水电解生产 H2 的系统。在此,我们提出了一种柠檬酸阴离子(CA)修饰的泡沫镍上的镍铁层双氢氧化物纳米片阵列(NiFe LDH@NiFe-CA/NF),它是一种高效稳定的电催化剂,可用于长期碱性海水氧化。它只需要 387 mV 的低过电位就能达到 1000 mA cm-2 的电流密度,优于 NiFe LDH/NF(414 mV)。此外,由于具有抗腐蚀特性,NiFe LDH@NiFe-CA/NF 还能在 1000 mA cm-2 电流密度下连续进行 300 小时的氧进化测试。此外,所制造的电池可在 300 mA cm-2 (60 °C、6 M KOH + 海水)条件下稳定运行,且仅需 1.69 V 电压,实现了海水分馏的低能耗。
{"title":"Citrate ions-modified NiFe layered double hydroxide for durable alkaline seawater oxidation","authors":"","doi":"10.1016/j.jcis.2024.10.086","DOIUrl":"10.1016/j.jcis.2024.10.086","url":null,"abstract":"<div><div>Seawater electrolysis taking advantage of coastal/offshore areas is acknowledged as a potential way of large-scale producing H<sub>2</sub> to substitute traditional technology. However, anodic catalysts with high overpotentials and limited lifespans (caused by chloride-induced competitive chemical reactions) hinder the system of seawater electrolysis for H<sub>2</sub> production. Herein, we present a citrate anion (CA) modified NiFe layered double hydroxide nanosheet array on nickel foam (NiFe LDH@NiFe-CA/NF), which serves as an efficient and stable electrocatalyst towards long-term alkaline seawater oxidation. It requires only a low overpotential of 387 mV to achieve a current density of 1000 mA cm<sup>−2</sup>, outperforming NiFe LDH/NF (414 mV). Moreover, NiFe LDH@NiFe-CA/NF exhibits continuous oxygen evolution testing for 300 h at 1000 mA cm<sup>−2</sup> due to its anti-corrosion characterization. Additionally, the fabricated cell can stably operate at 300 mA cm<sup>−2</sup> (60 °C, 6 M KOH + seawater) and only require 1.69 V, achieving low energy consumption of seawater splitting.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.jcis.2024.10.051
Hypothesis
Poly-N-isopropylacrylamide (PNIPAM)-based microgels have garnered significant interest as effective soft particulate stabilizers because of their deformability and functionality. However, the inherent hydrophilic nature of microgel restricts their potential use in stabilizing water-in-oil (W/O) Pickering emulsions. Employing diverse polar additives can improve the hydrophobicity of microgels, thus unlocking new possibilities in inverse Pickering emulsion formation and materials fabrication.
Experiments
Different types of microgels were generated using free-radical precipitation polymerization with tailored physiochemical properties. The effect of various polar additives on the wettability, adsorption kinetics, and interfacial coverage of microgels was systematically investigated. Additive-swollen microgels were utilized to stabilize inverse W/O Pickering emulsions, which served as templates to develop functional materials with stimuli responsiveness and hierarchical structures.
Findings
Additive-swollen PNIPAM-based microgels exhibited enhanced hydrophobicity and superior emulsifying capability, which spontaneously assembled and jammed at oil–water interfaces, resulting in a significant interfacial energy decrease. The additive-swollen microgels formed a tightly packed, elastic, and responsive microgel monolayer. The feasibility of the strategy was verified by preparing various inverse W/O Pickering emulsions and high internal phase Pickering emulsions (HIPPEs). More importantly, this straightforward formation strategy of microgel-stabilized inverse W/O Pickering emulsions offered a novel platform to create functional materials with customized inner structures from microscale (e.g., responsive core–shell hydrogel microspheres and colloidosomes) to macroscale (e.g., hierarchical porous materials) that can be used for potential applications, such as recyclable contaminant removal and droplet manipulation.
{"title":"Assembly and jamming of polar additive-swollen microgels at liquid–liquid interfaces: From inverse Pickering emulsions to functional materials","authors":"","doi":"10.1016/j.jcis.2024.10.051","DOIUrl":"10.1016/j.jcis.2024.10.051","url":null,"abstract":"<div><h3>Hypothesis</h3><div>Poly-<em>N</em>-isopropylacrylamide (PNIPAM)-based microgels have garnered significant interest as effective soft particulate stabilizers because of their deformability and functionality. However, the inherent hydrophilic nature of microgel restricts their potential use in stabilizing water-in-oil (W/O) Pickering emulsions. Employing diverse polar additives can improve the hydrophobicity of microgels, thus unlocking new possibilities in inverse Pickering emulsion formation and materials fabrication.</div></div><div><h3>Experiments</h3><div>Different types of microgels were generated using free-radical precipitation polymerization with tailored physiochemical properties. The effect of various polar additives on the wettability, adsorption kinetics, and interfacial coverage of microgels was systematically investigated. Additive-swollen microgels were utilized to stabilize inverse W/O Pickering emulsions, which served as templates to develop functional materials with stimuli responsiveness and hierarchical structures.</div></div><div><h3>Findings</h3><div>Additive-swollen PNIPAM-based microgels exhibited enhanced hydrophobicity and superior emulsifying capability, which spontaneously assembled and jammed at oil–water interfaces, resulting in a significant interfacial energy decrease. The additive-swollen microgels formed a tightly packed, elastic, and responsive microgel monolayer. The feasibility of the strategy was verified by preparing various inverse W/O Pickering emulsions and high internal phase Pickering emulsions (HIPPEs). More importantly, this straightforward formation strategy of microgel-stabilized inverse W/O Pickering emulsions offered a novel platform to create functional materials with customized inner structures from microscale (e.g., responsive core–shell hydrogel microspheres and colloidosomes) to macroscale (e.g., hierarchical porous materials) that can be used for potential applications, such as recyclable contaminant removal and droplet manipulation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.jcis.2024.10.073
Youcun Bai, Zhixian Wu, Qidong Lv, Wei Sun, Wenhao Liang, Xin Xia, Heng Zhang, Chang Ming Li
Vanadium-based oxides have good application prospects in aqueous zinc ion batteries (AZIBs) due to their structures suitable for zinc ion extraction and intercalation. However, their poor conductivity limits their further development. The d-band center plays a key role in promoting adsorption of ions, which promotes the development of electrode materials. Here, a series of MoV2O8 compounds with oxygen defect (Od-MoV2O8) were synthesized by a simple hydrothermal process and a subsequent vacuum calcination process through strict control of the deoxidation time. Theoretical calculations reveal that the abundant oxygen vacancies in MoV2O8 effectively regulate the d-band center of the zinc ion adsorption site. This precise control of the d-band center enhances the zinc ion adsorption energy of MoV2O8, lowers the migration energy barrier for zinc ions, and ultimately significantly boosts zinc storage performance. The specific capacity is as high as 282.4 mAh/g after 100 cycles at 0.1 A/g, and it also shows excellent performance and outstanding cycle life. In addition, the maximum energy density of Od-MVO-0.5 (MoV2O8 sample deoxidized for 0.5 h) is 343.3 Wh kg-1. Importantly, the mechanism of Zn2+ storage in Od-MoV2O8 was revealed by the combination of in situ and ex situ characterization techniques.
{"title":"Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery.","authors":"Youcun Bai, Zhixian Wu, Qidong Lv, Wei Sun, Wenhao Liang, Xin Xia, Heng Zhang, Chang Ming Li","doi":"10.1016/j.jcis.2024.10.073","DOIUrl":"https://doi.org/10.1016/j.jcis.2024.10.073","url":null,"abstract":"<p><p>Vanadium-based oxides have good application prospects in aqueous zinc ion batteries (AZIBs) due to their structures suitable for zinc ion extraction and intercalation. However, their poor conductivity limits their further development. The d-band center plays a key role in promoting adsorption of ions, which promotes the development of electrode materials. Here, a series of MoV<sub>2</sub>O<sub>8</sub> compounds with oxygen defect (O<sub>d</sub>-MoV<sub>2</sub>O<sub>8</sub>) were synthesized by a simple hydrothermal process and a subsequent vacuum calcination process through strict control of the deoxidation time. Theoretical calculations reveal that the abundant oxygen vacancies in MoV<sub>2</sub>O<sub>8</sub> effectively regulate the d-band center of the zinc ion adsorption site. This precise control of the d-band center enhances the zinc ion adsorption energy of MoV<sub>2</sub>O<sub>8</sub>, lowers the migration energy barrier for zinc ions, and ultimately significantly boosts zinc storage performance. The specific capacity is as high as 282.4 mAh/g after 100 cycles at 0.1 A/g, and it also shows excellent performance and outstanding cycle life. In addition, the maximum energy density of O<sub>d</sub>-MVO-0.5 (MoV<sub>2</sub>O<sub>8</sub> sample deoxidized for 0.5 h) is 343.3 Wh kg<sup>-1</sup>. Importantly, the mechanism of Zn<sup>2+</sup> storage in O<sub>d</sub>-MoV<sub>2</sub>O<sub>8</sub> was revealed by the combination of in situ and ex situ characterization techniques.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.jcis.2024.10.069
With the advent of the information age, there is a growing demand for wearable sensing devices. Conventional hydrogels are a class of materials that can hold a large amount of water, with a three-dimensional network of hydrophilic polymerization chains inside. In remote areas or harsh environments, there is an urgent demand for a flexible sensor that is environmentally stable, wearable, and has high mechanical properties. Due to the hydrophilicity of the traditional hydrogel surface, it is easy to adsorb dust or be contaminated by liquid, which limits its further application. As a result, the superhydrophobic hydrogel F-PTD was designed using SiO2@PDA, F-HNT and PT hydrogel. TGA, XPS, SEM, EDS, FT-IR was used to characterize the structure of F-PTD, respectively. Based on the study of mussels, the adhesion property of polydopamine was utilized as an adhesion agent between organic–inorganic interfaces while improving the roughness of the hydrogel surface. The fabricated F-PTD superhydrophobic conductive hydrogels have excellent stretchability (Tensile Strain > 500 %), stable hydrophobicity (CA > 150°), and sensitive electrical conductivity (GF = 3.49). The contact angle of F-PTD is greater than 150° for tensile strains in the range of 0–350 %, and it maintains superhydrophobic under corrosive solutions with pH = 1–14. This enables F-PTD to perform the sensing function of detecting human body signals under complex environmental conditions, which has great potential for application in the field of underwater rescue, wearable electronics and human–computer interfaces.
{"title":"Superhydrophobic and super-stretchable conductive composite hydrogels for human motion monitoring in complex condition","authors":"","doi":"10.1016/j.jcis.2024.10.069","DOIUrl":"10.1016/j.jcis.2024.10.069","url":null,"abstract":"<div><div>With the advent of the information age, there is a growing demand for wearable sensing devices. Conventional hydrogels are a class of materials that can hold a large amount of water, with a three-dimensional network of hydrophilic polymerization chains inside. In remote areas or harsh environments, there is an urgent demand for a flexible sensor that is environmentally stable, wearable, and has high mechanical properties. Due to the hydrophilicity of the traditional hydrogel surface, it is easy to adsorb dust or be contaminated by liquid, which limits its further application. As a result, the superhydrophobic hydrogel F-PTD was designed using SiO<sub>2</sub>@PDA, F-HNT and PT hydrogel. TGA, XPS, SEM, EDS, FT-IR was used to characterize the structure of F-PTD, respectively. Based on the study of mussels, the adhesion property of polydopamine was utilized as an adhesion agent between organic–inorganic interfaces while improving the roughness of the hydrogel surface. The fabricated F-PTD superhydrophobic conductive hydrogels have excellent stretchability (Tensile Strain > 500 %), stable hydrophobicity (CA > 150°), and sensitive electrical conductivity (GF = 3.49). The contact angle of F-PTD is greater than 150° for tensile strains in the range of 0–350 %, and it maintains superhydrophobic under corrosive solutions with pH = 1–14. This enables F-PTD to perform the sensing function of detecting human body signals under complex environmental conditions, which has great potential for application in the field of underwater rescue, wearable electronics and human–computer interfaces.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}