Pub Date : 2021-11-01DOI: 10.2345/0890-8205-55.4.118
R. Naftalovich, Marko Oydanich, Tolga Berkman, Andrew Iskander
Mechanical respirators typically use a plastic circuit apparatus to pass gases from the ventilator to the patient. Structural integrity of these circuits is crucial for maintaining oxygenation. Anesthesiologists, respiratory therapists, and other critical care professionals rely on the circuit to be free of defects. The American Society for Testing and Materials maintains standards of medical devices and had a standard (titled Standard Specification for Anesthesia Breathing Tubes) that included circuits. This standard, which was last updated in 2008, has since been withdrawn. Lack of a defined standard can invite quality fade-the phenomenon whereby manufacturers deliberately but surreptitiously reduce material quality to widen profit margins. With plastics, this is often in the form of thinner material. A minimum thickness delineated in the breathing circuit standard would help ensure product quality, maintain tolerance to mechanical insults, and avert leaks. Our impression is that over the recent years, the plastic in many of the commercially available breathing circuits has gotten thinner. We experienced a circuit leak in the middle of a laminectomy due to compromised plastic tubing in a location that evaded the safety circuit leak check that is performed prior to surgery. This compromised ventilation and oxygenation in the middle of a surgery in which the patient is positioned prone and hence with a minimally accessible airway; it could have resulted in anoxic brain injury or death. The incident led us to reflect on the degree of thinness of the circuit's plastic.
{"title":"Quality Fade in Medical Device Manufacturing: Thinness of Airway Breathing Circuit Plastic.","authors":"R. Naftalovich, Marko Oydanich, Tolga Berkman, Andrew Iskander","doi":"10.2345/0890-8205-55.4.118","DOIUrl":"https://doi.org/10.2345/0890-8205-55.4.118","url":null,"abstract":"Mechanical respirators typically use a plastic circuit apparatus to pass gases from the ventilator to the patient. Structural integrity of these circuits is crucial for maintaining oxygenation. Anesthesiologists, respiratory therapists, and other critical care professionals rely on the circuit to be free of defects. The American Society for Testing and Materials maintains standards of medical devices and had a standard (titled Standard Specification for Anesthesia Breathing Tubes) that included circuits. This standard, which was last updated in 2008, has since been withdrawn. Lack of a defined standard can invite quality fade-the phenomenon whereby manufacturers deliberately but surreptitiously reduce material quality to widen profit margins. With plastics, this is often in the form of thinner material. A minimum thickness delineated in the breathing circuit standard would help ensure product quality, maintain tolerance to mechanical insults, and avert leaks. Our impression is that over the recent years, the plastic in many of the commercially available breathing circuits has gotten thinner. We experienced a circuit leak in the middle of a laminectomy due to compromised plastic tubing in a location that evaded the safety circuit leak check that is performed prior to surgery. This compromised ventilation and oxygenation in the middle of a surgery in which the patient is positioned prone and hence with a minimally accessible airway; it could have resulted in anoxic brain injury or death. The incident led us to reflect on the degree of thinness of the circuit's plastic.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 4 1","pages":"118-120"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48115768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.2345/0890-8205-55.4.121
P. Upendra
The number of cyberattacks and information system breaches in healthcare have grown exponentially, as well as escalated from accidental incidents to targeted and malicious attacks. With medical devices representing a substantial repository of all the assets in a healthcare system, network security and monitoring are critical to ensuring cyber hygiene of these medical devices. Because of the unique challenges of connected medical devices, a passive network monitoring (PNM) solution is preferred for its overall cybersecurity management. This article is intended to provide guidance on selecting PNM solutions while reinforcing the importance of program assessment, project management, and use of leading practices that facilitate the selection and further implementation of PNM solutions for medical devices. The article provides a detailed introduction to connected medical devices and its role in effective care delivery, an overview of network security types and PNM, an overview of the National Institute of Standards and Technology Cybersecurity Framework and its application for program assessment, essentials of project management for PNM solution selection and implementation, key performance indicators for measuring a solution's ability to meet critical cybersecurity needs for medical devices, and lessons learned from the author's professional experience, selective literature review, and leading practices. Rather than describing a complete list of guidelines for selecting PNM solutions, the current work is intended to provide guidance based on the author's experience and leading practices compiled from successful medical device cybersecurity programs.
{"title":"Selecting a Passive Network Monitoring Solution for Medical Device Cybersecurity Management.","authors":"P. Upendra","doi":"10.2345/0890-8205-55.4.121","DOIUrl":"https://doi.org/10.2345/0890-8205-55.4.121","url":null,"abstract":"The number of cyberattacks and information system breaches in healthcare have grown exponentially, as well as escalated from accidental incidents to targeted and malicious attacks. With medical devices representing a substantial repository of all the assets in a healthcare system, network security and monitoring are critical to ensuring cyber hygiene of these medical devices. Because of the unique challenges of connected medical devices, a passive network monitoring (PNM) solution is preferred for its overall cybersecurity management. This article is intended to provide guidance on selecting PNM solutions while reinforcing the importance of program assessment, project management, and use of leading practices that facilitate the selection and further implementation of PNM solutions for medical devices. The article provides a detailed introduction to connected medical devices and its role in effective care delivery, an overview of network security types and PNM, an overview of the National Institute of Standards and Technology Cybersecurity Framework and its application for program assessment, essentials of project management for PNM solution selection and implementation, key performance indicators for measuring a solution's ability to meet critical cybersecurity needs for medical devices, and lessons learned from the author's professional experience, selective literature review, and leading practices. Rather than describing a complete list of guidelines for selecting PNM solutions, the current work is intended to provide guidance based on the author's experience and leading practices compiled from successful medical device cybersecurity programs.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 4 1","pages":"121-130"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46305102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.2345/0890-8205-55.4.143
G. Mcdonnell, Harold S. Baseman, Lena Cordie-Bancroft
In the design, control, and regulation of the manufacturing and supply of microbiologically controlled devices (including sterile devices) and drug products (including cleaning, disinfection, and sterilization processing and/or aseptic process manufacturing), different terms and/or definitions are often used for similar processes or applications internationally. With product innovations (including combination products and cell-based therapy) and global regulatory influences, there is a growing need to harmonize these definitions. The objective of the Kilmer Regulatory Innovation microbiological quality and sterility assurance glossary is to clarify and harmonize the practical use of terms employed by the different parts of regulated healthcare product industries internationally and by regulators of the manufacturing and supply of microbiologically controlled healthcare products internationally. The glossary is expected to continue to evolve, and further industry, academic, and regulatory input is encouraged.
{"title":"Words Matter: A Commentary and Glossary of Definitions for Microbiological Quality.","authors":"G. Mcdonnell, Harold S. Baseman, Lena Cordie-Bancroft","doi":"10.2345/0890-8205-55.4.143","DOIUrl":"https://doi.org/10.2345/0890-8205-55.4.143","url":null,"abstract":"In the design, control, and regulation of the manufacturing and supply of microbiologically controlled devices (including sterile devices) and drug products (including cleaning, disinfection, and sterilization processing and/or aseptic process manufacturing), different terms and/or definitions are often used for similar processes or applications internationally. With product innovations (including combination products and cell-based therapy) and global regulatory influences, there is a growing need to harmonize these definitions. The objective of the Kilmer Regulatory Innovation microbiological quality and sterility assurance glossary is to clarify and harmonize the practical use of terms employed by the different parts of regulated healthcare product industries internationally and by regulators of the manufacturing and supply of microbiologically controlled healthcare products internationally. The glossary is expected to continue to evolve, and further industry, academic, and regulatory input is encouraged.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 4 1","pages":"143-164"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49491865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.2345/0890-8205-55.3.100
R. Naftalovich, Andrew Iskander, Faraz Chaudhry, S. Char, J. Eloy
The ability to adequately ventilate a patient is critical and sometimes a challenge in the emergency, intensive care, and anesthesiology settings. Commonly, initial ventilation is achieved through the use of a face mask in conjunction with a bag that is manually squeezed by the clinician to generate positive pressure and flow of air or oxygen through the patient's airway. Large or small erroneous openings in the breathing circuit can lead to leaks that compromise ventilation ability. Standard procedure in anesthesiology is to check the circuit apparatus and oxygen delivery system prior to every case. Because the face mask itself is not a piece of equipment that is associated with a source of leak, some common anesthesia machine designs are constructed such that the circuit is tested without the mask component. We present an example of a leak that resulted from complete failure of the face mask due to a tiny tear in its cuff by the patient's sharp teeth edges. This subsequently prevented formation of a seal between the face mask and the patient's face and rendered the device incapable of generating the positive pressure it is designed to deliver. This instance depicts the broader lesson that deviation from clinical routines can reveal unappreciated sources of vulnerability in device design.
{"title":"Deviation from Clinical Routines Can Reveal Sources of Device Design Vulnerability.","authors":"R. Naftalovich, Andrew Iskander, Faraz Chaudhry, S. Char, J. Eloy","doi":"10.2345/0890-8205-55.3.100","DOIUrl":"https://doi.org/10.2345/0890-8205-55.3.100","url":null,"abstract":"The ability to adequately ventilate a patient is critical and sometimes a challenge in the emergency, intensive care, and anesthesiology settings. Commonly, initial ventilation is achieved through the use of a face mask in conjunction with a bag that is manually squeezed by the clinician to generate positive pressure and flow of air or oxygen through the patient's airway. Large or small erroneous openings in the breathing circuit can lead to leaks that compromise ventilation ability. Standard procedure in anesthesiology is to check the circuit apparatus and oxygen delivery system prior to every case. Because the face mask itself is not a piece of equipment that is associated with a source of leak, some common anesthesia machine designs are constructed such that the circuit is tested without the mask component. We present an example of a leak that resulted from complete failure of the face mask due to a tiny tear in its cuff by the patient's sharp teeth edges. This subsequently prevented formation of a seal between the face mask and the patient's face and rendered the device incapable of generating the positive pressure it is designed to deliver. This instance depicts the broader lesson that deviation from clinical routines can reveal unappreciated sources of vulnerability in device design.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3 1","pages":"100-102"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43235255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.2345/0899-8205-51.6.fmi
D. J. King
{"title":"Full Issue.","authors":"D. J. King","doi":"10.2345/0899-8205-51.6.fmi","DOIUrl":"https://doi.org/10.2345/0899-8205-51.6.fmi","url":null,"abstract":"","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"51 6 1","pages":"fmi-C4"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2345/0899-8205-51.6.fmi","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44387525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.2345/0890-8205-55.3.112
Yan Long, Sara Rampazzi, Takeshi Sugawara, Kevin Fu
{"title":"Protecting COVID-19 Vaccine Transportation and Storage from Analog Cybersecurity Threats.","authors":"Yan Long, Sara Rampazzi, Takeshi Sugawara, Kevin Fu","doi":"10.2345/0890-8205-55.3.112","DOIUrl":"https://doi.org/10.2345/0890-8205-55.3.112","url":null,"abstract":"","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3 1","pages":"112-117"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49202083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.2345/0890-8205-55.3.85
T. Kremer, G. Mcdonnell, E. Mitzel, Nupur Jain, Henri Hubert, Klaus Roth, P. Labrie, Alex Villella
Validating a thermal disinfection process for the processing of medical devices using moist heat via direct temperature monitoring is a conservative approach and has been established as the A0 method. Traditional use of disinfection challenge microorganisms and testing techniques, although widely used and applicable for chemical disinfection studies, do not provide as robust a challenge for testing the efficacy of a thermal disinfection process. Considerable research has been established in the literature to demonstrate the relationship between the thermal resistance of microorganisms to inactivation and the A0 method formula. The A0 method, therefore, should be used as the preferred method for validating a thermal disinfection process using moist heat.
{"title":"Thermal Disinfection Validation: The Relationship Between A0 and Microbial Reduction.","authors":"T. Kremer, G. Mcdonnell, E. Mitzel, Nupur Jain, Henri Hubert, Klaus Roth, P. Labrie, Alex Villella","doi":"10.2345/0890-8205-55.3.85","DOIUrl":"https://doi.org/10.2345/0890-8205-55.3.85","url":null,"abstract":"Validating a thermal disinfection process for the processing of medical devices using moist heat via direct temperature monitoring is a conservative approach and has been established as the A0 method. Traditional use of disinfection challenge microorganisms and testing techniques, although widely used and applicable for chemical disinfection studies, do not provide as robust a challenge for testing the efficacy of a thermal disinfection process. Considerable research has been established in the literature to demonstrate the relationship between the thermal resistance of microorganisms to inactivation and the A0 method formula. The A0 method, therefore, should be used as the preferred method for validating a thermal disinfection process using moist heat.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3 1","pages":"85-90"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45562611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.2345/0890-8205-55.3.91
S. Seidman, H. Bassen
Certain low-frequency magnetic fields cause interference in implantable medical devices. Electromagnetic compatibility (EMC) standards prescribe injecting voltages into a device under evaluation to simplify testing while approximating or simulating real-world exposure situations to low-frequency magnetic fields. The EMC standard ISO 14117:2012, which covers implantable pacemakers and implantable cardioverter defibrillators (ICDs), specifies test levels for the bipolar configuration of sensing leads as being one-tenth of the levels for the unipolar configuration. The committee authoring this standard questioned this testing level difference and its clinical relevance. To evaluate this issue of EMC test levels, we performed both analytical calculations and computational modeling to determine a basis for this difference. Analytical calculations based upon Faraday's law determined the magnetically induced voltage in a 37.6-cm lead. Induced voltages were studied in a bipolar lead configuration with various spacing between a distal tip electrode and a ring electrode. Voltages induced in this bipolar lead configuration were compared with voltages induced in a unipolar lead configuration. Computational modeling of various lead configurations was performed using electromagnetic field simulation software. The two leads that were insulated, except for the distal and proximal tips, were immersed in a saline-conducting media. The leads were parallel and closely spaced to each other along their length. Both analytical calculations and computational modeling support continued use of a one-tenth amplitude reduction for testing pacemakers and ICDs in bipolar mode. The most recent edition of ISO 14117 includes rationale from this study.
{"title":"Determining EMC Test Levels for Implantable Devices in Bipolar Lead Configuration.","authors":"S. Seidman, H. Bassen","doi":"10.2345/0890-8205-55.3.91","DOIUrl":"https://doi.org/10.2345/0890-8205-55.3.91","url":null,"abstract":"Certain low-frequency magnetic fields cause interference in implantable medical devices. Electromagnetic compatibility (EMC) standards prescribe injecting voltages into a device under evaluation to simplify testing while approximating or simulating real-world exposure situations to low-frequency magnetic fields. The EMC standard ISO 14117:2012, which covers implantable pacemakers and implantable cardioverter defibrillators (ICDs), specifies test levels for the bipolar configuration of sensing leads as being one-tenth of the levels for the unipolar configuration. The committee authoring this standard questioned this testing level difference and its clinical relevance. To evaluate this issue of EMC test levels, we performed both analytical calculations and computational modeling to determine a basis for this difference. Analytical calculations based upon Faraday's law determined the magnetically induced voltage in a 37.6-cm lead. Induced voltages were studied in a bipolar lead configuration with various spacing between a distal tip electrode and a ring electrode. Voltages induced in this bipolar lead configuration were compared with voltages induced in a unipolar lead configuration. Computational modeling of various lead configurations was performed using electromagnetic field simulation software. The two leads that were insulated, except for the distal and proximal tips, were immersed in a saline-conducting media. The leads were parallel and closely spaced to each other along their length. Both analytical calculations and computational modeling support continued use of a one-tenth amplitude reduction for testing pacemakers and ICDs in bipolar mode. The most recent edition of ISO 14117 includes rationale from this study.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3 1","pages":"91-95"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41495190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.2345/0890-8205-55.3.96
S. Grimes, Axel Wirth
{"title":"The Case for Medical Device Cybersecurity Hygiene Practices for Frontline Personnel.","authors":"S. Grimes, Axel Wirth","doi":"10.2345/0890-8205-55.3.96","DOIUrl":"https://doi.org/10.2345/0890-8205-55.3.96","url":null,"abstract":"","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3 1","pages":"96-99"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42824860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-01DOI: 10.2345/0890-8205-55.3.103
Joan C. Brown, Manas Bhatnagar, Hugh Gordon, K. Lutrick, Jared Goodner, James Blum, Raquel R Bartz, D. Uslan, Ernesto David-DiMarino, A. Sorbello, Gregory H. Jackson, Jeremy Walsh, Lauren Neal, Marek Cyran, H. Francis, J. Cobb
OBJECTIVE We sought to explore the technical and legal readiness of healthcare institutions for novel data-sharing methods that allow clinical information to be extracted from electronic health records (EHRs) and submitted securely to the Food and Drug Administration's (FDA's) blockchain through a secure data broker (SDB). MATERIALS AND METHODS This assessment was divided into four sections: an institutional EHR readiness assessment, legal consultation, institutional review board application submission, and a test of healthcare data transmission over a blockchain infrastructure. RESULTS All participating institutions reported the ability to electronically extract data from EHRs for research. Formal legal agreements were deemed unnecessary to the project but would be needed in future tests of real patient data exchange. Data transmission to the FDA blockchain met the success criteria of data connection from within the four institutions' firewalls, externally to the FDA blockchain via a SDB. DISCUSSION The readiness survey indicated advanced analytic capability in hospital institutions and highlighted inconsistency in Fast Healthcare Interoperability Resources format utilitzation across institutions, despite requirements of the 21st Century Cures Act. Further testing across more institutions and annual exercises leveraging the application of data exchange over a blockchain infrastructure are recommended actions for determining the feasibility of this approach during a public health emergency and broaden the understanding of technical requirements for multisite data extraction. CONCLUSION The FDA's RAPID (Real-Time Application for Portable Interactive Devices) program, in collaboration with Discovery, the Critical Care Research Network's PREP (Program for Resilience and Emergency Preparedness), identified the technical and legal challenges and requirements for rapid data exchange to a government entity using the FDA blockchain infrastructure.
{"title":"Clinical Data Extraction During Public Health Emergencies: A Blockchain Technology Assessment.","authors":"Joan C. Brown, Manas Bhatnagar, Hugh Gordon, K. Lutrick, Jared Goodner, James Blum, Raquel R Bartz, D. Uslan, Ernesto David-DiMarino, A. Sorbello, Gregory H. Jackson, Jeremy Walsh, Lauren Neal, Marek Cyran, H. Francis, J. Cobb","doi":"10.2345/0890-8205-55.3.103","DOIUrl":"https://doi.org/10.2345/0890-8205-55.3.103","url":null,"abstract":"OBJECTIVE\u0000We sought to explore the technical and legal readiness of healthcare institutions for novel data-sharing methods that allow clinical information to be extracted from electronic health records (EHRs) and submitted securely to the Food and Drug Administration's (FDA's) blockchain through a secure data broker (SDB).\u0000\u0000\u0000MATERIALS AND METHODS\u0000This assessment was divided into four sections: an institutional EHR readiness assessment, legal consultation, institutional review board application submission, and a test of healthcare data transmission over a blockchain infrastructure.\u0000\u0000\u0000RESULTS\u0000All participating institutions reported the ability to electronically extract data from EHRs for research. Formal legal agreements were deemed unnecessary to the project but would be needed in future tests of real patient data exchange. Data transmission to the FDA blockchain met the success criteria of data connection from within the four institutions' firewalls, externally to the FDA blockchain via a SDB.\u0000\u0000\u0000DISCUSSION\u0000The readiness survey indicated advanced analytic capability in hospital institutions and highlighted inconsistency in Fast Healthcare Interoperability Resources format utilitzation across institutions, despite requirements of the 21st Century Cures Act. Further testing across more institutions and annual exercises leveraging the application of data exchange over a blockchain infrastructure are recommended actions for determining the feasibility of this approach during a public health emergency and broaden the understanding of technical requirements for multisite data extraction.\u0000\u0000\u0000CONCLUSION\u0000The FDA's RAPID (Real-Time Application for Portable Interactive Devices) program, in collaboration with Discovery, the Critical Care Research Network's PREP (Program for Resilience and Emergency Preparedness), identified the technical and legal challenges and requirements for rapid data exchange to a government entity using the FDA blockchain infrastructure.","PeriodicalId":35656,"journal":{"name":"Biomedical Instrumentation and Technology","volume":"55 3 1","pages":"103-111"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45958025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}