首页 > 最新文献

2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)最新文献

英文 中文
Balancing clusters to reduce response time variability in large scale image search 平衡聚类以减少大规模图像搜索中的响应时间变化
Pub Date : 2010-09-21 DOI: 10.1109/CBMI.2011.5972514
R. Tavenard, H. Jégou, L. Amsaleg
Many algorithms for approximate nearest neighbor search in high-dimensional spaces partition the data into clusters. At query time, for efficiency, an index selects the few (or a single) clusters nearest to the query point. Clusters are often produced by the well-known k-means approach since it has several desirable properties. On the downside, it tends to produce clusters having quite different cardinalities. Imbalanced clusters negatively impact both the variance and the expectation of query response times. This paper proposes to modify k-means centroids to produce clusters with more comparable sizes without sacrificing the desirable properties. Experiments with a large scale collection of image descriptors show that our algorithm significantly reduces the variance of response times without severely impacting the search quality.
在高维空间中,许多近似最近邻搜索算法将数据划分为簇。在查询时,为了提高效率,索引选择最接近查询点的几个(或单个)簇。聚类通常由众所周知的k-means方法产生,因为它具有几个理想的特性。缺点是,它倾向于产生具有完全不同基数的集群。不平衡的集群对查询响应时间的方差和期望都有负面影响。本文提出在不牺牲理想性质的情况下,修改k-均值质心以产生具有更多可比较大小的簇。大量图像描述符的实验表明,我们的算法在不严重影响搜索质量的情况下显著降低了响应时间方差。
{"title":"Balancing clusters to reduce response time variability in large scale image search","authors":"R. Tavenard, H. Jégou, L. Amsaleg","doi":"10.1109/CBMI.2011.5972514","DOIUrl":"https://doi.org/10.1109/CBMI.2011.5972514","url":null,"abstract":"Many algorithms for approximate nearest neighbor search in high-dimensional spaces partition the data into clusters. At query time, for efficiency, an index selects the few (or a single) clusters nearest to the query point. Clusters are often produced by the well-known k-means approach since it has several desirable properties. On the downside, it tends to produce clusters having quite different cardinalities. Imbalanced clusters negatively impact both the variance and the expectation of query response times. This paper proposes to modify k-means centroids to produce clusters with more comparable sizes without sacrificing the desirable properties. Experiments with a large scale collection of image descriptors show that our algorithm significantly reduces the variance of response times without severely impacting the search quality.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121444585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Multi-video summarization based on OB-MMR 基于OB-MMR的多视频摘要
Pub Date : 1900-01-01 DOI: 10.1109/CBMI.2011.5972539
Yingbo Li, B. Mérialdo
In this paper we propose a novel algorithm for video summarization, OB-MMR (Optimized Balanced Audio Video Maximal Marginal Relevance). This algorithm is suitable to summarize both single and multiple videos. OB-MMR is achieved by optimizing the parameters in Balanced AV-MMR (Balanced Audio Video Maximal Marginal Relevance), namely the balance factor between audio information and visual information in the video, but also the importance of face and audio transitions among audio segments with different genres. Therefore, OB-MMR achieves a better result than previous algorithms, Video-MMR and Balanced AV-MMR. Furthermore, it is possible to select the optimized parameters for each genre of videos, which leads to promising automatic algorithms for video summarization in the future large-scale experiments.
在本文中,我们提出了一种新的视频摘要算法,OB-MMR(优化平衡音视频最大边际相关性)。该算法既适用于单个视频,也适用于多个视频的总结。OB-MMR是通过优化Balanced AV-MMR (Balanced Audio Video maximum Marginal Relevance,平衡音频视频最大边际相关性)中的参数来实现的,即视频中音频信息和视觉信息之间的平衡因子,以及不同类型音频片段之间人脸和音频过渡的重要性。因此,OB-MMR比之前的Video-MMR和Balanced AV-MMR算法取得了更好的效果。此外,它还可以为每个视频类型选择优化的参数,从而在未来的大规模实验中为视频摘要提供有前途的自动算法。
{"title":"Multi-video summarization based on OB-MMR","authors":"Yingbo Li, B. Mérialdo","doi":"10.1109/CBMI.2011.5972539","DOIUrl":"https://doi.org/10.1109/CBMI.2011.5972539","url":null,"abstract":"In this paper we propose a novel algorithm for video summarization, OB-MMR (Optimized Balanced Audio Video Maximal Marginal Relevance). This algorithm is suitable to summarize both single and multiple videos. OB-MMR is achieved by optimizing the parameters in Balanced AV-MMR (Balanced Audio Video Maximal Marginal Relevance), namely the balance factor between audio information and visual information in the video, but also the importance of face and audio transitions among audio segments with different genres. Therefore, OB-MMR achieves a better result than previous algorithms, Video-MMR and Balanced AV-MMR. Furthermore, it is possible to select the optimized parameters for each genre of videos, which leads to promising automatic algorithms for video summarization in the future large-scale experiments.","PeriodicalId":358337,"journal":{"name":"2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128718215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
期刊
2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1