首页 > 最新文献

Computing and Software for Big Science最新文献

英文 中文
Allen: A High-Level Trigger on GPUs for LHCb. Allen: LHCb在gpu上的高级触发器。
Q1 Computer Science Pub Date : 2020-01-01 Epub Date: 2020-04-30 DOI: 10.1007/s41781-020-00039-7
R Aaij, J Albrecht, M Belous, P Billoir, T Boettcher, A Brea Rodríguez, D Vom Bruch, D H Cámpora Pérez, A Casais Vidal, D C Craik, P Fernandez Declara, L Funke, V V Gligorov, B Jashal, N Kazeev, D Martínez Santos, F Pisani, D Pliushchenko, S Popov, R Quagliani, M Rangel, F Reiss, C Sánchez Mayordomo, R Schwemmer, M Sokoloff, H Stevens, A Ustyuzhanin, X Vilasís Cardona, M Williams

We describe a fully GPU-based implementation of the first level trigger for the upgrade of the LHCb detector, due to start data taking in 2021. We demonstrate that our implementation, named Allen, can process the 40 Tbit/s data rate of the upgraded LHCb detector and perform a wide variety of pattern recognition tasks. These include finding the trajectories of charged particles, finding proton-proton collision points, identifying particles as hadrons or muons, and finding the displaced decay vertices of long-lived particles. We further demonstrate that Allen can be implemented in around 500 scientific or consumer GPU cards, that it is not I/O bound, and can be operated at the full LHC collision rate of 30 MHz. Allen is the first complete high-throughput GPU trigger proposed for a HEP experiment.

我们描述了一个完全基于gpu的第一级触发器的实现,用于LHCb探测器的升级,由于2021年开始数据采集。我们证明了我们的实现,名为Allen,可以处理升级后的LHCb探测器的40 Tbit/s数据速率,并执行各种模式识别任务。这些包括寻找带电粒子的轨迹,寻找质子-质子碰撞点,识别粒子是强子还是介子,以及寻找长寿命粒子的位移衰变顶点。我们进一步证明,Allen可以在大约500个科学或消费者GPU卡中实现,它没有I/O限制,并且可以在30 MHz的完整LHC碰撞速率下运行。Allen是为HEP实验提出的第一个完整的高吞吐量GPU触发器。
{"title":"Allen: A High-Level Trigger on GPUs for LHCb.","authors":"R Aaij,&nbsp;J Albrecht,&nbsp;M Belous,&nbsp;P Billoir,&nbsp;T Boettcher,&nbsp;A Brea Rodríguez,&nbsp;D Vom Bruch,&nbsp;D H Cámpora Pérez,&nbsp;A Casais Vidal,&nbsp;D C Craik,&nbsp;P Fernandez Declara,&nbsp;L Funke,&nbsp;V V Gligorov,&nbsp;B Jashal,&nbsp;N Kazeev,&nbsp;D Martínez Santos,&nbsp;F Pisani,&nbsp;D Pliushchenko,&nbsp;S Popov,&nbsp;R Quagliani,&nbsp;M Rangel,&nbsp;F Reiss,&nbsp;C Sánchez Mayordomo,&nbsp;R Schwemmer,&nbsp;M Sokoloff,&nbsp;H Stevens,&nbsp;A Ustyuzhanin,&nbsp;X Vilasís Cardona,&nbsp;M Williams","doi":"10.1007/s41781-020-00039-7","DOIUrl":"https://doi.org/10.1007/s41781-020-00039-7","url":null,"abstract":"<p><p>We describe a fully GPU-based implementation of the first level trigger for the upgrade of the LHCb detector, due to start data taking in 2021. We demonstrate that our implementation, named Allen, can process the 40 Tbit/s data rate of the upgraded LHCb detector and perform a wide variety of pattern recognition tasks. These include finding the trajectories of charged particles, finding proton-proton collision points, identifying particles as hadrons or muons, and finding the displaced decay vertices of long-lived particles. We further demonstrate that Allen can be implemented in around 500 scientific or consumer GPU cards, that it is not I/O bound, and can be operated at the full LHC collision rate of 30 MHz. Allen is the first complete high-throughput GPU trigger proposed for a HEP experiment.</p>","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"4 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41781-020-00039-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38771175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
FPGA-Accelerated Machine Learning Inference as a Service for Particle Physics Computing fpga加速机器学习推理为粒子物理计算服务
Q1 Computer Science Pub Date : 2019-10-14 DOI: 10.1007/s41781-019-0027-2
Javier Mauricio Duarte, P. Harris, S. Hauck, B. Holzman, Shih-Chieh Hsu, S. Jindariani, Suffian N. Khan, B. Kreis, Brian Lee, Miaoyuan Liu, V. Loncar, J. Ngadiuba, K. Pedro, Brandon Perez, M. Pierini, D. Rankin, Nhan Tran, Matthew Trahms, A. Tsaris, Colin Versteeg, Ted Way, Dustin Werran, Zhenbin Wu
{"title":"FPGA-Accelerated Machine Learning Inference as a Service for Particle Physics Computing","authors":"Javier Mauricio Duarte, P. Harris, S. Hauck, B. Holzman, Shih-Chieh Hsu, S. Jindariani, Suffian N. Khan, B. Kreis, Brian Lee, Miaoyuan Liu, V. Loncar, J. Ngadiuba, K. Pedro, Brandon Perez, M. Pierini, D. Rankin, Nhan Tran, Matthew Trahms, A. Tsaris, Colin Versteeg, Ted Way, Dustin Werran, Zhenbin Wu","doi":"10.1007/s41781-019-0027-2","DOIUrl":"https://doi.org/10.1007/s41781-019-0027-2","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41781-019-0027-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53240472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 47
Brain Computation: A Computer Science Perspective 大脑计算:一个计算机科学的视角
Q1 Computer Science Pub Date : 2019-10-05 DOI: 10.1007/978-3-319-91908-9_11
W. Maass, C. Papadimitriou, S. Vempala, R. Legenstein
{"title":"Brain Computation: A Computer Science Perspective","authors":"W. Maass, C. Papadimitriou, S. Vempala, R. Legenstein","doi":"10.1007/978-3-319-91908-9_11","DOIUrl":"https://doi.org/10.1007/978-3-319-91908-9_11","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"53 1","pages":"184-199"},"PeriodicalIF":0.0,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74685242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
10 Reasons to Get Interested in Graph Drawing 对图形绘制感兴趣的10个原因
Q1 Computer Science Pub Date : 2019-10-05 DOI: 10.1007/978-3-319-91908-9_6
Carla Binucci, U. Brandes, Tim Dwyer, Martin Gronemann, R. V. Hanxleden, M. V. Kreveld, Petra Mutzel, M. Schaefer, F. Schreiber, B. Speckmann
{"title":"10 Reasons to Get Interested in Graph Drawing","authors":"Carla Binucci, U. Brandes, Tim Dwyer, Martin Gronemann, R. V. Hanxleden, M. V. Kreveld, Petra Mutzel, M. Schaefer, F. Schreiber, B. Speckmann","doi":"10.1007/978-3-319-91908-9_6","DOIUrl":"https://doi.org/10.1007/978-3-319-91908-9_6","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"31 1","pages":"85-104"},"PeriodicalIF":0.0,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81445495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Software Architecture of Modern Model Checkers 现代模型检查器的软件体系结构
Q1 Computer Science Pub Date : 2019-10-05 DOI: 10.1007/978-3-319-91908-9_20
F. Kordon, M. Leuschel, J. Pol, Y. Thierry-Mieg
{"title":"Software Architecture of Modern Model Checkers","authors":"F. Kordon, M. Leuschel, J. Pol, Y. Thierry-Mieg","doi":"10.1007/978-3-319-91908-9_20","DOIUrl":"https://doi.org/10.1007/978-3-319-91908-9_20","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"11 1","pages":"393-419"},"PeriodicalIF":0.0,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76820182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Multi-Mode DAE Models - Challenges, Theory and Implementation 多模式DAE模型——挑战、理论和实现
Q1 Computer Science Pub Date : 2019-10-05 DOI: 10.1007/978-3-319-91908-9_16
A. Benveniste, B. Caillaud, H. Elmqvist, Khalil Ghorbal, M. Otter, Marc Pouzet
{"title":"Multi-Mode DAE Models - Challenges, Theory and Implementation","authors":"A. Benveniste, B. Caillaud, H. Elmqvist, Khalil Ghorbal, M. Otter, Marc Pouzet","doi":"10.1007/978-3-319-91908-9_16","DOIUrl":"https://doi.org/10.1007/978-3-319-91908-9_16","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"21 1","pages":"283-310"},"PeriodicalIF":0.0,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88960999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics 高能物理的机器学习管道与现代大数据工具
Q1 Computer Science Pub Date : 2019-09-23 DOI: 10.1007/s41781-020-00040-0
M. Migliorini, R. Castellotti, L. Canali, M. Zanetti
{"title":"Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics","authors":"M. Migliorini, R. Castellotti, L. Canali, M. Zanetti","doi":"10.1007/s41781-020-00040-0","DOIUrl":"https://doi.org/10.1007/s41781-020-00040-0","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41781-020-00040-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41989090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Using ATLAS@Home to Exploit Extra CPU from Busy Grid Sites 使用ATLAS@Home利用繁忙网格站点的额外CPU
Q1 Computer Science Pub Date : 2019-05-21 DOI: 10.1007/s41781-019-0023-6
Wenjing Wu, D. Cameron, D. Qing
{"title":"Using ATLAS@Home to Exploit Extra CPU from Busy Grid Sites","authors":"Wenjing Wu, D. Cameron, D. Qing","doi":"10.1007/s41781-019-0023-6","DOIUrl":"https://doi.org/10.1007/s41781-019-0023-6","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41781-019-0023-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47218149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Review of High-Quality Random Number Generators 高质量随机数生成器综述
Q1 Computer Science Pub Date : 2019-03-04 DOI: 10.1007/s41781-019-0034-3
F. James, L. Moneta
{"title":"Review of High-Quality Random Number Generators","authors":"F. James, L. Moneta","doi":"10.1007/s41781-019-0034-3","DOIUrl":"https://doi.org/10.1007/s41781-019-0034-3","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41781-019-0034-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47290662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Rucio: Scientific Data Management Rucio:科学数据管理
Q1 Computer Science Pub Date : 2019-02-26 DOI: 10.1007/s41781-019-0026-3
M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado, D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing, V. Garonne, A. Girolamo, L. Goossens, W. Guan, J. Guenther, T. Javůrek, D. Kuhn, M. Lassnig, F. Lopez, N. Magini, A. Molfetas, A. Nairz, F. Ould-Saada, Stefanie Prenner, C. Serfon, G. Stewart, E. Vaandering, P. Vasileva, R. Vigne, T. Wegner
{"title":"Rucio: Scientific Data Management","authors":"M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado, D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing, V. Garonne, A. Girolamo, L. Goossens, W. Guan, J. Guenther, T. Javůrek, D. Kuhn, M. Lassnig, F. Lopez, N. Magini, A. Molfetas, A. Nairz, F. Ould-Saada, Stefanie Prenner, C. Serfon, G. Stewart, E. Vaandering, P. Vasileva, R. Vigne, T. Wegner","doi":"10.1007/s41781-019-0026-3","DOIUrl":"https://doi.org/10.1007/s41781-019-0026-3","url":null,"abstract":"","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41781-019-0026-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45736440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 98
期刊
Computing and Software for Big Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1