Pub Date : 2021-10-06DOI: 10.1142/s2424913021410034
Minglin He, Y. Ni, Shuai Wang
In this work, we investigated the microstructure and tensile properties of Inconel 718 alloy processed by selective laser melting (SLM) and conventional casting technique using multiscale characterization methods. Results indicated that a columnar grain structure containing cellular structure units with submicron size was the major feature in the as-printed Inconel 718 alloy. At the cellular structure boundaries, the high-density dislocation tangles, segregation of Nb/Mo atoms and nano-sized Laves phases were found. Meanwhile, we also observed dislocation pile-ups and stacking faults in the interior of the cellular structure. In contrast, in the as-cast Inconel 718 alloy, both the grains and Laves phases were much coarser. Discrete dislocations, dislocation tangles and [Formula: see text]” precipitates were locally observed in the grains. Tensile results showed the as-printed Inconel 718 alloy had a higher strength and a lower elongation in comparison with those in the as-cast alloy. Based on the experimental results, the formation mechanism of the cellular structure was discussed.
{"title":"On the microstructure and tensile properties of Inconel 718 alloy fabricated by selective laser melting and conventional casting","authors":"Minglin He, Y. Ni, Shuai Wang","doi":"10.1142/s2424913021410034","DOIUrl":"https://doi.org/10.1142/s2424913021410034","url":null,"abstract":"In this work, we investigated the microstructure and tensile properties of Inconel 718 alloy processed by selective laser melting (SLM) and conventional casting technique using multiscale characterization methods. Results indicated that a columnar grain structure containing cellular structure units with submicron size was the major feature in the as-printed Inconel 718 alloy. At the cellular structure boundaries, the high-density dislocation tangles, segregation of Nb/Mo atoms and nano-sized Laves phases were found. Meanwhile, we also observed dislocation pile-ups and stacking faults in the interior of the cellular structure. In contrast, in the as-cast Inconel 718 alloy, both the grains and Laves phases were much coarser. Discrete dislocations, dislocation tangles and [Formula: see text]” precipitates were locally observed in the grains. Tensile results showed the as-printed Inconel 718 alloy had a higher strength and a lower elongation in comparison with those in the as-cast alloy. Based on the experimental results, the formation mechanism of the cellular structure was discussed.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48266397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1142/s2424913021020021
Jinglei Yang, David May, Erfan Kazemi, L. Chang
{"title":"Preface: Special Issue on Mechanical Behaviours of Functional Materials and Structures","authors":"Jinglei Yang, David May, Erfan Kazemi, L. Chang","doi":"10.1142/s2424913021020021","DOIUrl":"https://doi.org/10.1142/s2424913021020021","url":null,"abstract":"","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47621834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-27DOI: 10.1142/s2424913021500041
J. Lertthanasarn, C. Liu, M. Pham
Architected lattice metamaterials offer extraordinary specific strength and stiffness that can be tailored through the architecture. Meta-crystals mimic crystalline strengthening features in crystalline alloys to obtain high strength and improved post-yield stability of lattice materials. This study investigates synergistic effects of the base material’s intrinsic crystalline microstructure and architected polycrystal-like architecture on the mechanical behavior of architected metamaterials. Four different polygrain-like meta-crystals were fabricated from 316L, Inconel 718 (IN718) and Ti6Al4V via laser powder bed fusion (L-PBF). While the elastic modulus of the meta-crystals did not vary significantly with the base material or the number of meta-grains, the strength of the meta-crystals showed strong increasing correlation with reducing the size of meta-grains. The differences between meta-crystals made by the three alloys were the most substantial in the post-yield behavior, where the 316L meta-crystals were the most stable while Ti6Al4V meta-crystals were the most erratic. The differences in the post-yield behavior were attributed to the base material’s ductility and intrinsic work-hardening. For all base materials, increasing the number of meta-grains improved the post-yield stability of meta-crystals. The tolerance to the processing defects also differed with the base material. Detrimental defects such as the high surface roughness on the downskin of the struts or the large, irregularly shaped pores near the surface of the struts led to early strut fracture in Ti6Al4V meta-crystals. In contrast, ductile IN718 was able to tolerate such defects, enabling the most significant synergistic strengthening across lengthscales to achieve architected materials of low relative density, but with a very high strength and an excellent energy absorption.
{"title":"Influence of the base material on the mechanical behaviors of polycrystal-like meta-crystals","authors":"J. Lertthanasarn, C. Liu, M. Pham","doi":"10.1142/s2424913021500041","DOIUrl":"https://doi.org/10.1142/s2424913021500041","url":null,"abstract":"Architected lattice metamaterials offer extraordinary specific strength and stiffness that can be tailored through the architecture. Meta-crystals mimic crystalline strengthening features in crystalline alloys to obtain high strength and improved post-yield stability of lattice materials. This study investigates synergistic effects of the base material’s intrinsic crystalline microstructure and architected polycrystal-like architecture on the mechanical behavior of architected metamaterials. Four different polygrain-like meta-crystals were fabricated from 316L, Inconel 718 (IN718) and Ti6Al4V via laser powder bed fusion (L-PBF). While the elastic modulus of the meta-crystals did not vary significantly with the base material or the number of meta-grains, the strength of the meta-crystals showed strong increasing correlation with reducing the size of meta-grains. The differences between meta-crystals made by the three alloys were the most substantial in the post-yield behavior, where the 316L meta-crystals were the most stable while Ti6Al4V meta-crystals were the most erratic. The differences in the post-yield behavior were attributed to the base material’s ductility and intrinsic work-hardening. For all base materials, increasing the number of meta-grains improved the post-yield stability of meta-crystals. The tolerance to the processing defects also differed with the base material. Detrimental defects such as the high surface roughness on the downskin of the struts or the large, irregularly shaped pores near the surface of the struts led to early strut fracture in Ti6Al4V meta-crystals. In contrast, ductile IN718 was able to tolerate such defects, enabling the most significant synergistic strengthening across lengthscales to achieve architected materials of low relative density, but with a very high strength and an excellent energy absorption.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44202934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-16DOI: 10.1142/S2424913021410010
Jin'e Sun, Baicheng Zhang, X. Qu
High strength Al alloy development is the key technique to additive manufacturing (AM) applied on lightweight of aerospace, automotive and military industry. Unlike the conventional wrought Al–Si eutectic alloys available for AM process, the strength of new developed Al alloy can be improved by in situ or additional nano-precipitated phase. This paper presents an overview of high strength Al alloys development including metallic additives, such as Zr, Sc, Mn, Cu, etc., and nanoparticle additives, such as ceramics (TiB2, TiC, LaB6 and TiN) as well as carbon nanotubes (CNTs). The addition of Zr and Sc elements significantly prevents hot tearing and enhances the strength of laser processed Al alloys because the nanoscale Al3Zr, Al3Sc and Al3 (Sc, Zr) precipitated phases generate, facilitate the heterogeneous nucleation of Al matrix and refine the microstructure. Moreover, the addition of Mn and Cu elements provides an increment in the toughness and strength of laser processed Al alloys through the superimposed effect of multi-element solid solution reinforcement and precipitation strengthening role of some Al2CuMg and Al6Mn. The growth process of Al alloy can be interrupted by the addition of nanoceramics particles as additional nucleation site which leads the columnar grain transforms to the equiaxed grain. Furthermore, the mechanism of mutual solubility of LaB6, TiB2, TiC and TiN in Al alloys is systematically studied. Finally, an assessment of the state in laser processed high strength Al alloys and the research demands for the expansion of laser powder bed fusion of Al metallic components are provided.
{"title":"High strength Al alloy development for laser powder bed fusion","authors":"Jin'e Sun, Baicheng Zhang, X. Qu","doi":"10.1142/S2424913021410010","DOIUrl":"https://doi.org/10.1142/S2424913021410010","url":null,"abstract":"High strength Al alloy development is the key technique to additive manufacturing (AM) applied on lightweight of aerospace, automotive and military industry. Unlike the conventional wrought Al–Si eutectic alloys available for AM process, the strength of new developed Al alloy can be improved by in situ or additional nano-precipitated phase. This paper presents an overview of high strength Al alloys development including metallic additives, such as Zr, Sc, Mn, Cu, etc., and nanoparticle additives, such as ceramics (TiB2, TiC, LaB6 and TiN) as well as carbon nanotubes (CNTs). The addition of Zr and Sc elements significantly prevents hot tearing and enhances the strength of laser processed Al alloys because the nanoscale Al3Zr, Al3Sc and Al3 (Sc, Zr) precipitated phases generate, facilitate the heterogeneous nucleation of Al matrix and refine the microstructure. Moreover, the addition of Mn and Cu elements provides an increment in the toughness and strength of laser processed Al alloys through the superimposed effect of multi-element solid solution reinforcement and precipitation strengthening role of some Al2CuMg and Al6Mn. The growth process of Al alloy can be interrupted by the addition of nanoceramics particles as additional nucleation site which leads the columnar grain transforms to the equiaxed grain. Furthermore, the mechanism of mutual solubility of LaB6, TiB2, TiC and TiN in Al alloys is systematically studied. Finally, an assessment of the state in laser processed high strength Al alloys and the research demands for the expansion of laser powder bed fusion of Al metallic components are provided.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41875228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.1142/s2424913021500028
A. Yavari
In this paper, the recent literature of finite eignestrains in nonlinear elastic solids is reviewed, and Eshelby’s inclusion problem at finite strains is revisited. The subtleties of the analysis of combinations of finite eigenstrains for the example of combined finite radial, azimuthal, axial and twist eigenstrains in a finite circular cylindrical bar are discussed. The stress field of a spherical inclusion with uniform pure dilatational eigenstrain in a radially-inhomogeneous spherical ball made of arbitrary incompressible isotropic solids is analyzed. The same problem for a finite circular cylindrical bar is revisited. The stress and deformation fields of an orthotropic incompressible solid circular cylinder with distributed eigentwists are analyzed.
{"title":"On Eshelby’s inclusion problem in nonlinear anisotropic elasticity","authors":"A. Yavari","doi":"10.1142/s2424913021500028","DOIUrl":"https://doi.org/10.1142/s2424913021500028","url":null,"abstract":"In this paper, the recent literature of finite eignestrains in nonlinear elastic solids is reviewed, and Eshelby’s inclusion problem at finite strains is revisited. The subtleties of the analysis of combinations of finite eigenstrains for the example of combined finite radial, azimuthal, axial and twist eigenstrains in a finite circular cylindrical bar are discussed. The stress field of a spherical inclusion with uniform pure dilatational eigenstrain in a radially-inhomogeneous spherical ball made of arbitrary incompressible isotropic solids is analyzed. The same problem for a finite circular cylindrical bar is revisited. The stress and deformation fields of an orthotropic incompressible solid circular cylinder with distributed eigentwists are analyzed.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44503533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.1142/s2424913020500174
Cheng Qiu, Yu-Lin Han, L. Shanmugam, Zhidong Guan, Zhong Zhang, Shanyi Du, Jinglei Yang
A novel approach to determine the translaminar crack resistance curve of composite laminates by means of a machine learning model is presented in this paper. The main objective of the proposed method is to extract hidden information of crack resistance from strength values of center-cracked laminates. Compared to traditional measurements, the notable advantage is that only tensile strength values are required which can be obtained by a rather simpler experimental procedure. This is achieved by the incorporation of the finite fracture mechanics, which links crack resistance with strength values. In order to get training dataset, a semi-analytical method using both finite element method and finite fracture mechanics is employed to generate strength values of center-cracked specimens with different random R-curves, which serve as inputs for our artificial neural network. Regarding the outputs, principal component analysis is performed to reduce dimensionality and find suitable descriptors for crack resistance curves. After successfully training machine learning model, experimental studies on basalt fiber reinforced laminates are conducted as validation. Results have proven the effectiveness of the proposed strategy for predicting crack resistance curves, as well as the feasibility of using machine learning-based framework to find out more information about composites from simple experimental data.
{"title":"Machine learning-based prediction of the translaminar R-curve of composites from simple tensile test of pre-cracked samples","authors":"Cheng Qiu, Yu-Lin Han, L. Shanmugam, Zhidong Guan, Zhong Zhang, Shanyi Du, Jinglei Yang","doi":"10.1142/s2424913020500174","DOIUrl":"https://doi.org/10.1142/s2424913020500174","url":null,"abstract":"A novel approach to determine the translaminar crack resistance curve of composite laminates by means of a machine learning model is presented in this paper. The main objective of the proposed method is to extract hidden information of crack resistance from strength values of center-cracked laminates. Compared to traditional measurements, the notable advantage is that only tensile strength values are required which can be obtained by a rather simpler experimental procedure. This is achieved by the incorporation of the finite fracture mechanics, which links crack resistance with strength values. In order to get training dataset, a semi-analytical method using both finite element method and finite fracture mechanics is employed to generate strength values of center-cracked specimens with different random R-curves, which serve as inputs for our artificial neural network. Regarding the outputs, principal component analysis is performed to reduce dimensionality and find suitable descriptors for crack resistance curves. After successfully training machine learning model, experimental studies on basalt fiber reinforced laminates are conducted as validation. Results have proven the effectiveness of the proposed strategy for predicting crack resistance curves, as well as the feasibility of using machine learning-based framework to find out more information about composites from simple experimental data.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42912715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-24DOI: 10.1142/s2424913020500186
Haiyang Fan, Yahui Liu, Shoufeng Yang
Ti–6Al–2Sn–4Zr–2Mo (Ti-6242), a near-[Formula: see text] titanium alloy explicitly designed for high-temperature applications, consists of a martensitic structure after selective laser melting (SLM). However, martensite is thermally unstable and thus adverse to the long-term service at high temperatures. Hence, understanding martensite decomposition is a high priority for seeking post-heat treatment for SLMed Ti-6242. Besides, compared to the room-temperature titanium alloys like Ti–6Al–4V, aging treatment is indispensable to high-temperature near-[Formula: see text] titanium alloys so that their microstructures and mechanical properties are pre-stabilized before working at elevated temperatures. Therefore, the aging response of the material is another concern of this study. To elaborate the two concerns, SLMed Ti-6242 was first isothermally annealed at 650[Formula: see text]C and then water-quenched to room temperature, followed by standard aging at 595[Formula: see text]C. The microstructure analysis revealed a temperature-dependent martensite decomposition, which proceeded sluggishly at [Formula: see text]C despite a long duration but rapidly transformed into lamellar [Formula: see text] above the martensite transition zone (770[Formula: see text]C). As heating to [Formula: see text]C), it produced a coarse microstructure containing new martensites formed in water quenching. The subsequent mechanical testing indicated that SLM-built Ti-6242 is excellent in terms of both room- and high-temperature tensile properties, with around 1400 MPa (UTS)[Formula: see text]5% elongation and 1150 MPa (UTS)[Formula: see text]10% elongation, respectively. However, the combination of water quenching and aging embrittled the as-built material severely.
{"title":"Martensite decomposition during post-heat treatments and the aging response of near-α Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy processed by selective laser melting (SLM)","authors":"Haiyang Fan, Yahui Liu, Shoufeng Yang","doi":"10.1142/s2424913020500186","DOIUrl":"https://doi.org/10.1142/s2424913020500186","url":null,"abstract":"Ti–6Al–2Sn–4Zr–2Mo (Ti-6242), a near-[Formula: see text] titanium alloy explicitly designed for high-temperature applications, consists of a martensitic structure after selective laser melting (SLM). However, martensite is thermally unstable and thus adverse to the long-term service at high temperatures. Hence, understanding martensite decomposition is a high priority for seeking post-heat treatment for SLMed Ti-6242. Besides, compared to the room-temperature titanium alloys like Ti–6Al–4V, aging treatment is indispensable to high-temperature near-[Formula: see text] titanium alloys so that their microstructures and mechanical properties are pre-stabilized before working at elevated temperatures. Therefore, the aging response of the material is another concern of this study. To elaborate the two concerns, SLMed Ti-6242 was first isothermally annealed at 650[Formula: see text]C and then water-quenched to room temperature, followed by standard aging at 595[Formula: see text]C. The microstructure analysis revealed a temperature-dependent martensite decomposition, which proceeded sluggishly at [Formula: see text]C despite a long duration but rapidly transformed into lamellar [Formula: see text] above the martensite transition zone (770[Formula: see text]C). As heating to [Formula: see text]C), it produced a coarse microstructure containing new martensites formed in water quenching. The subsequent mechanical testing indicated that SLM-built Ti-6242 is excellent in terms of both room- and high-temperature tensile properties, with around 1400 MPa (UTS)[Formula: see text]5% elongation and 1150 MPa (UTS)[Formula: see text]10% elongation, respectively. However, the combination of water quenching and aging embrittled the as-built material severely.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47744716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-17DOI: 10.1142/s2424913021500016
X. Long, Minghui Mao, Chang Lu, R. Li, Fengrui Jia
Great progress has been made in the dynamic mechanical properties of concrete which is usually assumed to be homogenous. In fact, concrete is a typical heterogeneous material, and the meso-scale structure with aggregates has a significant effect on its macroscopic mechanical properties of concrete. In this paper, concrete is regarded as a two-phase composite material, that is, a combination of aggregate inclusion and mortar matrix. To create the finite element (FE) models, the Monte Carlo method is used to place the aggregates as random inclusions into the mortar matrix of the cylindrical specimens. To validate the numerical simulations of such an inclusion-matrix model at high strain rates, the comparisons with experimental results using the split Hopkinson pressure bar are made and good agreement is achieved in terms of dynamic increasing factor. By performing more extensive FE predictions, the influences of aggregate size and content on the macroscopic dynamic properties (i.e., peak dynamic strength) of concrete materials subjected to high strain rates are further investigated based on the back-propagation (BP) artificial neural network method. It is found that the particle size of aggregate has little effect on the dynamic mechanical properties of concrete but the peak dynamic strength of concrete increases obviously with the content increase of aggregate. After detailed comparisons with FE simulations, machine learning predictions based on the BP algorithm show good applicability for predicting dynamic mechanical strength of concrete with different aggregate sizes and contents. Instead of FE analysis with complicated meso-scale aggregate pre-processing, time-consuming simulation and laborious post-processing, machine learning predictions reproduce the stress–strain curves of concrete materials under high strain rates and thus the constitutive behavior can be efficiently predicted.
{"title":"Modeling of heterogeneous materials at high strain rates with machine learning algorithms trained by finite element simulations","authors":"X. Long, Minghui Mao, Chang Lu, R. Li, Fengrui Jia","doi":"10.1142/s2424913021500016","DOIUrl":"https://doi.org/10.1142/s2424913021500016","url":null,"abstract":"Great progress has been made in the dynamic mechanical properties of concrete which is usually assumed to be homogenous. In fact, concrete is a typical heterogeneous material, and the meso-scale structure with aggregates has a significant effect on its macroscopic mechanical properties of concrete. In this paper, concrete is regarded as a two-phase composite material, that is, a combination of aggregate inclusion and mortar matrix. To create the finite element (FE) models, the Monte Carlo method is used to place the aggregates as random inclusions into the mortar matrix of the cylindrical specimens. To validate the numerical simulations of such an inclusion-matrix model at high strain rates, the comparisons with experimental results using the split Hopkinson pressure bar are made and good agreement is achieved in terms of dynamic increasing factor. By performing more extensive FE predictions, the influences of aggregate size and content on the macroscopic dynamic properties (i.e., peak dynamic strength) of concrete materials subjected to high strain rates are further investigated based on the back-propagation (BP) artificial neural network method. It is found that the particle size of aggregate has little effect on the dynamic mechanical properties of concrete but the peak dynamic strength of concrete increases obviously with the content increase of aggregate. After detailed comparisons with FE simulations, machine learning predictions based on the BP algorithm show good applicability for predicting dynamic mechanical strength of concrete with different aggregate sizes and contents. Instead of FE analysis with complicated meso-scale aggregate pre-processing, time-consuming simulation and laborious post-processing, machine learning predictions reproduce the stress–strain curves of concrete materials under high strain rates and thus the constitutive behavior can be efficiently predicted.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48057484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.1142/s242491302102001x
{"title":"Preface: Special Issue: Recent Advances in 3D/4D Printing","authors":"","doi":"10.1142/s242491302102001x","DOIUrl":"https://doi.org/10.1142/s242491302102001x","url":null,"abstract":"","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43045831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1142/s242491302150003x
Zhuohao Xiao, Wenqiang Wang, Xiuying Li, Ling Zhang, Tianshu Zhang, Ming Gao, L. Kong, Kun Zhou, Yin Liu
Mullite has an orthorhombic crystal structure, with various advantages, such as high mechanical strength, and stable chemical and physical properties. Especially, mullite whiskers have been widely acknowledged to be potential candidates as reinforcing elements in the fabrication of ceramic-matrix composites. Various strategies have been developed to synthesize mullite whiskers, such as catalytic methods, liquid-phase reaction, molten salt reaction, solid-state reaction and high-energy ball milling process. In different synthesis methods, the underlying mechanisms governing the anisotropic grain growth of mullite grains vary. This paper aims to offer an overview on the progress in fabrication of mullite whiskers with different methods, and the perspectives on these special materials are briefly discussed.
{"title":"Progress in fabrication and characterization of mullite whiskers","authors":"Zhuohao Xiao, Wenqiang Wang, Xiuying Li, Ling Zhang, Tianshu Zhang, Ming Gao, L. Kong, Kun Zhou, Yin Liu","doi":"10.1142/s242491302150003x","DOIUrl":"https://doi.org/10.1142/s242491302150003x","url":null,"abstract":"Mullite has an orthorhombic crystal structure, with various advantages, such as high mechanical strength, and stable chemical and physical properties. Especially, mullite whiskers have been widely acknowledged to be potential candidates as reinforcing elements in the fabrication of ceramic-matrix composites. Various strategies have been developed to synthesize mullite whiskers, such as catalytic methods, liquid-phase reaction, molten salt reaction, solid-state reaction and high-energy ball milling process. In different synthesis methods, the underlying mechanisms governing the anisotropic grain growth of mullite grains vary. This paper aims to offer an overview on the progress in fabrication of mullite whiskers with different methods, and the perspectives on these special materials are briefly discussed.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47184852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}