首页 > 最新文献

U.S. Geological Survey Scientific Investigations Map最新文献

英文 中文
Isostatic gravity map of Mountain Pass and vicinity, California and Nevada 加州和内华达州帕斯山及其附近地区的均衡重力图
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/sim3412a
D. Ponce, K. Denton
{"title":"Isostatic gravity map of Mountain Pass and vicinity, California and Nevada","authors":"D. Ponce, K. Denton","doi":"10.3133/sim3412a","DOIUrl":"https://doi.org/10.3133/sim3412a","url":null,"abstract":"","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69293647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado 科罗拉多州鹰县和莱克县的北莱德维尔7.5 '四边形地质图
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/sim3400
C. A. Ruleman, T. Brandt, M. Caffee, B. Goehring
CR–CO–LN–01–14 39.2750272 106.346184 3236 3 2.73 0.9999 0 0.2766 25.271 970±22 7.07±0.16 47.40±1.25 6.70±0.23 20.66±0.48 2.32 21.29±0.57 2.66 1.03 CR–CO–LN–02–14 39.2748902 106.347121 3030 3 2.73 0.9999 0 0.2783 41.551 1,475±26 6.59±0.12 44.20±1.16 6.71±0.21 19.45±0.35 1.78 20.04±0.53 2.65 1.03 CR–CO–LN–03–14 39.2760246 106.348754 3030 3 2.73 0.9999 0 0.2791 30.354 977±33 5.98±0.20 40.80±1.27 6.82±0.31 17.81±0.60 3.36 18.68±0.59 3.14 1.05 Cblk–3509–1 -------0.2808 -4±01 --------CR–CO–HR–06–11 39.3550122 106.370884 3248 3 2.73 0.9996 0 0.2697 15.703 539±15 6.14±0.17 44.60±1.93 7.26±0.37 15.96±0.44 2.73 17.85±0.78 4.37 1.12 CR–CO–LN–01–11 39.3415053 106.368624 3236 3 2.73 0.9999 0 0.2875 27.647 978±24 6.76±0.17 46.00±1.65 6.80±0.30 17.63±0.45 2.52 18.50±0.67 3.62 1.05 CR–CO–LN–02–11 39.3209233 106.340185 3036 3 2.73 0.9995 0 0.2801 19.716 815±14 7.69±0.14 51.40±1.41 6.68±0.22 22.17±0.39 1.78 22.83±0.63 2.77 1.03 CR–CO–LN–03–11 39.3231251 106.341468 3036 3 2.73 0.9995 0 0.2825 20.025 1,119±21 10.50±0.20 69.20±2.19 6.59±0.24 29.55±0.56 1.91 30.04±0.97 3.21 1.02 CR–CO–LN–04–11 39.33184 106.354525 3067 3 2.73 0.9998 0 0.2818 39.845 1,358±21 6.40±0.10 43.00±1.18 6.72±0.21 18.52±0.29 1.57 19.14±0.53 2.77 1.03 CR–CO–LN–05–11 39.3305518 106.35682 3064 3 2.73 0.9992 0 0.2842 24.561 763±21 5.87±0.16 39.10±1.30 6.66±0.29 17.12±0.48 2.79 17.58±0.59 3.36 1.03 Cblk–3436–2 -------0.2876 -5±1 --------Cblk–3436–1 -------0.2828 -4±1 --------Blank sample measured for instrument calibration. Table 1. Be and Al cosmogenic radionuclide sample data and age analyses. Sampling was carried out following established procedures outlined in Gosse and Phillips (2001). This included recording elevation, latitude, longitude, and topographic shielding data for each sample location, which accounts for any hindrance to Be and Al production from the surrounding skyline. Ages of samples were calculated using the CRONUS-Earth online calculator V.2.2 following the time-invariant scaling model of Lal (1991) and Stone (2000). Uncertainties are reported at the 1 sigma (σ) (±9 percent external uncertainty; Balco and others, 2008). Consistent with past studies within the region, no corrections for erosion or snow cover were applied, which allows for comparison with previous Be chronologies reported for the upper Arkansas River valley and central Colorado (Guido and others, 2007; Briner, 2009; Ward and others, 2009; Young and others, 2011) when adjustments for production rates are made. 39° 39°30'
CR–CO–LN–01–14 39.2750272 106.346684 3236 3 2.73 0.9999 0 0.2766 25.271 970±22 7.07±0.16 47.40±1.25 6.70±0.23 20.66±0.48 2.32 21.29±0.57 2.66 1.03 CR–CO-LN–02–14 39.2748902 106.347121 3030 3 2.73 0999 0 0.2783 41.551 1475±26 6.59±0.12 44.20±1.16 6.71±0.21 19.45±0.35 1.78 20.04±0.53 2.65 1.03 CR-CO–LN-03–14 39.2760246 106.38754 3030 3 2.7 3 0.9999 0 0.279130.354 977±33 5.98±0.20 40.80±1.27 6.82±0.31 17.81±0.60 3.36 18.68±0.59 3.14 1.05 Cblk–3509–1--------0.2808–4±01-------CR–CO–HR–06–11 39.3550122 106.370084 3248 3 2.73 0.9996 0 0.2697 15.703 539±15 6.14±0.17 44.60±1.93 7.26±0.37 15.96±0.44 2.73 17.85±0.78 4.37 1.12 CR–CO-LN–01–11 39.3415053 106.368624 3236 3 2.73 0.2899 0 0.2875 27.647 978±24.76±0.1746.00±1.65 6.80±0.30 17.63±0.45 2.52 18.50±0.67 3.62 1.05 CR–CO–LN–02–11 39.3209233 106.340185 3036 3 2.73 0.9995 0 0.2801 19.716 815±14 7.69±0.14 51.40±1.41 6.68±0.22 22.17±0.39 1.78 22.83±0.63 2.77 1.03 CR–CO-LN–03–11 39.3231251 106.341468 3036 3 27.3 0.9995 00 0.2825 20.025 1119±21 10.50±0.20 69.20±2.19±0.24 29.55±0.56 1.91 30.04±0.97 3.21 1.02CR–CO–LN–04–11 39.33184 106.354525 3067 3 2.73 0.9998 0 0.2818 39.845 1358±21 6.40±0.10 43.00±1.18 6.72±0.21 18.52±0.29 1.57 19.14±0.53 2.77 1.03 CR–CO-LN–05–11 39.3305518 106.35682 3064 3 2.73 09992 0 0.2842 24.561 763±21 5.87±0.16 39.10±1.30 6.66±0.29 17.12±0.48 2.79 17.58±0.59 3.36 1.03 Cblk–3436–2--------0.2876-5±1-------blk–3436–1--------0.2828-4±1---------为仪器校准测量的空白样品。表1。Be和Al宇宙成因放射性核素样品数据和年龄分析。按照Gosse和Phillips(2001)中概述的既定程序进行取样。这包括记录每个样本位置的高程、纬度、经度和地形屏蔽数据,这说明了周围天际线对Be和Al生产的任何阻碍。根据Lal(1991)和Stone(2000)的时不变比例模型,使用CRONUS Earth在线计算器V.2.2计算样本年龄。不确定性报告为1西格玛(σ)(±9%的外部不确定性;Balco等人,2008年)。与该地区过去的研究一致,没有对侵蚀或积雪进行校正,这使得在对生产率进行调整时,可以与之前报道的阿肯色河谷上游和科罗拉多州中部的Be年代进行比较(Guido等人,2007;Briner,2009;Ward等人,2009;Young等人,2011)。39°39°30'
{"title":"Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado","authors":"C. A. Ruleman, T. Brandt, M. Caffee, B. Goehring","doi":"10.3133/sim3400","DOIUrl":"https://doi.org/10.3133/sim3400","url":null,"abstract":"CR–CO–LN–01–14 39.2750272 106.346184 3236 3 2.73 0.9999 0 0.2766 25.271 970±22 7.07±0.16 47.40±1.25 6.70±0.23 20.66±0.48 2.32 21.29±0.57 2.66 1.03 CR–CO–LN–02–14 39.2748902 106.347121 3030 3 2.73 0.9999 0 0.2783 41.551 1,475±26 6.59±0.12 44.20±1.16 6.71±0.21 19.45±0.35 1.78 20.04±0.53 2.65 1.03 CR–CO–LN–03–14 39.2760246 106.348754 3030 3 2.73 0.9999 0 0.2791 30.354 977±33 5.98±0.20 40.80±1.27 6.82±0.31 17.81±0.60 3.36 18.68±0.59 3.14 1.05 Cblk–3509–1 -------0.2808 -4±01 --------CR–CO–HR–06–11 39.3550122 106.370884 3248 3 2.73 0.9996 0 0.2697 15.703 539±15 6.14±0.17 44.60±1.93 7.26±0.37 15.96±0.44 2.73 17.85±0.78 4.37 1.12 CR–CO–LN–01–11 39.3415053 106.368624 3236 3 2.73 0.9999 0 0.2875 27.647 978±24 6.76±0.17 46.00±1.65 6.80±0.30 17.63±0.45 2.52 18.50±0.67 3.62 1.05 CR–CO–LN–02–11 39.3209233 106.340185 3036 3 2.73 0.9995 0 0.2801 19.716 815±14 7.69±0.14 51.40±1.41 6.68±0.22 22.17±0.39 1.78 22.83±0.63 2.77 1.03 CR–CO–LN–03–11 39.3231251 106.341468 3036 3 2.73 0.9995 0 0.2825 20.025 1,119±21 10.50±0.20 69.20±2.19 6.59±0.24 29.55±0.56 1.91 30.04±0.97 3.21 1.02 CR–CO–LN–04–11 39.33184 106.354525 3067 3 2.73 0.9998 0 0.2818 39.845 1,358±21 6.40±0.10 43.00±1.18 6.72±0.21 18.52±0.29 1.57 19.14±0.53 2.77 1.03 CR–CO–LN–05–11 39.3305518 106.35682 3064 3 2.73 0.9992 0 0.2842 24.561 763±21 5.87±0.16 39.10±1.30 6.66±0.29 17.12±0.48 2.79 17.58±0.59 3.36 1.03 Cblk–3436–2 -------0.2876 -5±1 --------Cblk–3436–1 -------0.2828 -4±1 --------Blank sample measured for instrument calibration. Table 1. Be and Al cosmogenic radionuclide sample data and age analyses. Sampling was carried out following established procedures outlined in Gosse and Phillips (2001). This included recording elevation, latitude, longitude, and topographic shielding data for each sample location, which accounts for any hindrance to Be and Al production from the surrounding skyline. Ages of samples were calculated using the CRONUS-Earth online calculator V.2.2 following the time-invariant scaling model of Lal (1991) and Stone (2000). Uncertainties are reported at the 1 sigma (σ) (±9 percent external uncertainty; Balco and others, 2008). Consistent with past studies within the region, no corrections for erosion or snow cover were applied, which allows for comparison with previous Be chronologies reported for the upper Arkansas River valley and central Colorado (Guido and others, 2007; Briner, 2009; Ward and others, 2009; Young and others, 2011) when adjustments for production rates are made. 39° 39°30'","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69293472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bathymetric contour map, surface area and capacity table, and bathymetric difference map for Clearwater Lake near Piedmont, Missouri, 2017 2017年密苏里州皮埃蒙特附近清水湖的水深等高线图、表面积和容量表、水深差图
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/sim3409
Joseph M. Richards, R. Huizinga
Clearwater Lake, on the Black River near Piedmont in Reynolds County, Missouri, (fig. 1) was constructed in 1948 and is operated by the U.S. Army Corps of Engineers (USACE) for flood-risk reduction, recreation, and fish and wildlife habitat (U.S. Army Corps of Engineers, [n.d.]). The lake area is about 1,800 acres with about 34 miles of shoreline at the conservation pool elevation of 498 feet (ft). Since the completion of the lake in 1948, sedimentation likely has caused the storage capacity of the lake to decrease gradually. The loss of storage capacity can decrease the effectiveness of the lake to mitigate flooding, and excessive sediment accumulation also can reduce aquatic habitat in some areas of the lake. Many lakes operated by the USACE have periodic bathymetric and sediment surveys to monitor the status of the lake. The U.S. Geological Survey completed one such survey of Clearwater Lake in 2008 during a period of high lake level using bathymetric surveying equipment consisting of a multibeam echosounder (MBES), a singlebeam echosounder, 1/3 arc-second National Elevation Dataset data (used outside the MBES survey extent; https://nationalmap. gov/elevation.html), and the waterline derived from 2008 aerial light detection and ranging (lidar) data (Richards, 2013). In May 2017, the U.S. Geological Survey, in cooperation with the USACE, surveyed the bathymetry of Clearwater Lake to prepare an updated bathymetric map and a surface area and capacity table. The 2008 survey was contrasted with the 2017 survey to document the changes in the bathymetric surface of the lake.
清水湖位于密苏里州雷诺兹县皮埃蒙特附近的黑河上(图1),建于1948年,由美国陆军工程兵团(USACE)运营,用于减少洪水风险、娱乐、鱼类和野生动物栖息地(美国陆军工程兵团,[n.d])。湖泊面积约1800英亩,海拔498英尺(英尺)的保护池岸线约34英里。自1948年湖泊建成以来,泥沙淤积可能导致湖泊蓄水能力逐渐下降。蓄水能力的丧失会降低湖泊缓解洪水的有效性,过度的泥沙堆积也会减少湖泊某些地区的水生栖息地。USACE管理的许多湖泊都有定期的水深和沉积物调查,以监测湖泊的状况。美国地质调查局在2008年高水位期间完成了对清水湖的一次这样的调查,使用的测深设备包括多波束回声测深仪(MBES)、单波束回声测深仪、1/3弧秒国家高程数据集(在MBES调查范围之外使用;https://nationalmap。gov/elevation.html),以及2008年航空光探测和测距(激光雷达)数据得出的水线(Richards, 2013)。2017年5月,美国地质调查局与USACE合作,对清水湖的水深测量进行了调查,准备了一份更新的水深测量图和表面积和容量表。2008年的调查与2017年的调查进行了对比,以记录湖泊水深表面的变化。
{"title":"Bathymetric contour map, surface area and capacity table, and bathymetric difference map for Clearwater Lake near Piedmont, Missouri, 2017","authors":"Joseph M. Richards, R. Huizinga","doi":"10.3133/sim3409","DOIUrl":"https://doi.org/10.3133/sim3409","url":null,"abstract":"Clearwater Lake, on the Black River near Piedmont in Reynolds County, Missouri, (fig. 1) was constructed in 1948 and is operated by the U.S. Army Corps of Engineers (USACE) for flood-risk reduction, recreation, and fish and wildlife habitat (U.S. Army Corps of Engineers, [n.d.]). The lake area is about 1,800 acres with about 34 miles of shoreline at the conservation pool elevation of 498 feet (ft). Since the completion of the lake in 1948, sedimentation likely has caused the storage capacity of the lake to decrease gradually. The loss of storage capacity can decrease the effectiveness of the lake to mitigate flooding, and excessive sediment accumulation also can reduce aquatic habitat in some areas of the lake. Many lakes operated by the USACE have periodic bathymetric and sediment surveys to monitor the status of the lake. The U.S. Geological Survey completed one such survey of Clearwater Lake in 2008 during a period of high lake level using bathymetric surveying equipment consisting of a multibeam echosounder (MBES), a singlebeam echosounder, 1/3 arc-second National Elevation Dataset data (used outside the MBES survey extent; https://nationalmap. gov/elevation.html), and the waterline derived from 2008 aerial light detection and ranging (lidar) data (Richards, 2013). In May 2017, the U.S. Geological Survey, in cooperation with the USACE, surveyed the bathymetry of Clearwater Lake to prepare an updated bathymetric map and a surface area and capacity table. The 2008 survey was contrasted with the 2017 survey to document the changes in the bathymetric surface of the lake.","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69293578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Geologic map of the San Antonio Mountain area, northern New Mexico and southern Colorado 圣安东尼奥山区、新墨西哥州北部和科罗拉多州南部的地质图
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/SIM3417
K. Turner, Ren A. Thompson, M. Cosca, R. Shroba, Christine F. Chan, L. Morgan
{"title":"Geologic map of the San Antonio Mountain area, northern New Mexico and southern Colorado","authors":"K. Turner, Ren A. Thompson, M. Cosca, R. Shroba, Christine F. Chan, L. Morgan","doi":"10.3133/SIM3417","DOIUrl":"https://doi.org/10.3133/SIM3417","url":null,"abstract":"","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69293395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geologic map of the Lower Valley quadrangle, Caribou County, Idaho 爱达荷州卡里布县下山谷四合院地质图
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/sim3215
H. P. Oberlindacher, R. D. Hovland, Susan T. Miller, J. Evans, Robert J. Miller
.........................................................................................................................................................................
.........................................................................................................................................................................
{"title":"Geologic map of the Lower Valley quadrangle, Caribou County, Idaho","authors":"H. P. Oberlindacher, R. D. Hovland, Susan T. Miller, J. Evans, Robert J. Miller","doi":"10.3133/sim3215","DOIUrl":"https://doi.org/10.3133/sim3215","url":null,"abstract":".........................................................................................................................................................................","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69290338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geologic map of the Nepenthes Planum Region, Mars 火星Nepenthes平原地区的地质图
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/sim3389
J. Skinner, Kenneth L. Tanaka
{"title":"Geologic map of the Nepenthes Planum Region, Mars","authors":"J. Skinner, Kenneth L. Tanaka","doi":"10.3133/sim3389","DOIUrl":"https://doi.org/10.3133/sim3389","url":null,"abstract":"","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69292676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Geologic map of the Osage SW 7.5ʹ quadrangle, Newton, Madison, and Carroll Counties, Arkansas 阿肯色州牛顿、麦迪逊和卡罗尔县的奥塞奇SW 7.5 '四边形地质图
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/sim3416
K. Turner, M. Hudson
{"title":"Geologic map of the Osage SW 7.5ʹ quadrangle, Newton, Madison, and Carroll Counties, Arkansas","authors":"K. Turner, M. Hudson","doi":"10.3133/sim3416","DOIUrl":"https://doi.org/10.3133/sim3416","url":null,"abstract":"","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69293386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within Hays County, Texas 德克萨斯州海斯县爱德华兹和三一含水层的地质框架和水文地层学
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/sim3418
Allan K. Clark, Diana E. Pedraza, R. R. Morris
..........................................................................................................................................................
..........................................................................................................................................................
{"title":"Geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within Hays County, Texas","authors":"Allan K. Clark, Diana E. Pedraza, R. R. Morris","doi":"10.3133/sim3418","DOIUrl":"https://doi.org/10.3133/sim3418","url":null,"abstract":"..........................................................................................................................................................","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69293406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uranium concentrations in groundwater, northeastern Washington 华盛顿东北部地下水中的铀浓度
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/SIM3401
S. Kahle, Wendy B. Welch, Alison E. Tecca, Devin M. Eliason
{"title":"Uranium concentrations in groundwater, northeastern Washington","authors":"S. Kahle, Wendy B. Welch, Alison E. Tecca, Devin M. Eliason","doi":"10.3133/SIM3401","DOIUrl":"https://doi.org/10.3133/SIM3401","url":null,"abstract":"","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69293482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Delineation of the hydrogeologic framework of the Big Sioux aquifer near Sioux Falls, South Dakota, using airborne electromagnetic data 南达科他州苏福尔斯附近的大苏含水层的水文地质框架的描绘,使用航空电磁数据
Q4 Earth and Planetary Sciences Pub Date : 2018-01-01 DOI: 10.3133/sim3393
Kristen J. Valseth, G. C. Delzer, C. V. Price
The U.S. Geological Survey, in cooperation with the City of Sioux Falls, South Dakota, began developing a groundwater-fl ow model of the Big Sioux aquifer in 2014 that will enable the City to make more informed water management decisions, such as delineation of areas of the greatest specifi c yield, which is crucial for locating municipal wells. Innovative tools are being evaluated as part of this study that can improve the delineation of the hydrogeologic framework of the aquifer for use in development of a groundwater-fl ow model, and the approach could have transfer value for similar hydrogeologic settings. The fi rst step in developing a groundwater-fl ow model is determining the hydrogeologic framework (vertical and horizontal extents of the aquifer), which typically is determined by interpreting geologic information from drillers’ logs and surfi cial geology maps. However, well and borehole data only provide hydrogeologic information for a single location; conversely, nearly continuous geophysical data are collected along fl ight lines using airborne electromagnetic (AEM) surveys. These electromagnetic data are collected every 3 meters along a fl ight line (on average) and subsequently can be related to hydrogeologic properties. AEM data, coupled with and constrained by well and borehole data, can substantially improve the accuracy of aquifer hydrogeologic framework delineations and result in better groundwater-fl ow models. AEM data were acquired using the Resolve frequency-domain AEM system to map the Big Sioux aquifer in the region of the city of Sioux Falls. The survey acquired more than 870 line-kilometers of AEM data over a total area of about 145 square kilometers, primarily over the fl ood plain of the Big Sioux River between the cities of Dell Rapids and Sioux Falls. The U.S. Geological Survey inverted the survey data to generate resistivity-depth sections that were used in two-dimensional maps and in three-dimensional volumetric visualizations of the Earth resistivity distribution. Contact lines were drawn using a geographic information system to delineate interpreted geologic stratigraphy. The contact lines were converted to points and then interpolated into a raster surface. The methods used to develop elevation and depth maps of the hydrogeologic framework of the Big Sioux aquifer are described herein. The fi nal AEM interpreted aquifer thickness ranged from 0 to 31 meters with an average thickness of 12.8 meters. The estimated total volume of the aquifer was 1,060,000,000 cubic meters based on the assumption that the top of the aquifer is the land-surface elevation. A simple calculation of the volume (length times width times height) of a previous delineation of the aquifer estimated the aquifer volume at 378,000,000 cubic meters; thus, the estimation based on AEM data is more than twice the previous estimate. The depth to top of Sioux Quartzite, which ranged in depth from 0 to 90 meters, also was delineated from the AEM data.
美国地质调查局与南达科他州苏福尔斯市合作,于2014年开始开发大苏福尔斯含水层的地下水流动模型,该模型将使该市能够做出更明智的水管理决策,例如划定最大特定产量区域,这对定位市政井至关重要。作为这项研究的一部分,正在评估创新的工具,这些工具可以改善对含水层水文地质框架的描绘,用于开发地下水流动模型,并且该方法可能对类似的水文地质环境具有转移价值。开发地下水流动模型的第一步是确定水文地质框架(含水层的垂直和水平范围),这通常是通过解释钻探人员的测井曲线和地表地质图的地质信息来确定的。然而,井眼数据只能提供单一地点的水文地质信息;相反,使用机载电磁(AEM)测量沿着航线收集几乎连续的地球物理数据。这些电磁数据沿飞行线(平均)每3米收集一次,随后可以与水文地质性质有关。AEM数据与井眼数据相结合并受其约束,可以大大提高含水层水文地质框架圈定的准确性,从而得到更好的地下水流动模型。AEM数据是使用Resolve频域AEM系统获取的,用于绘制苏福尔斯市地区的大苏含水层。该调查在总面积约145平方公里的区域内获得了超过870行公里的AEM数据,主要是在戴尔急流城和苏福尔斯市之间的大苏河泛滥平原上。美国地质调查局(U.S. Geological Survey)对调查数据进行了倒转,生成了用于二维地图和三维地球电阻率分布体可视化的电阻率深度剖面。使用地理信息系统绘制接触线来描绘解释的地质地层。将接触线转换为点,然后插值到栅格表面。本文描述了用于开发大苏含水层水文地质框架的高程和深度图的方法。最终AEM解释的含水层厚度范围为0 ~ 31 m,平均厚度为12.8 m。假设含水层顶部为地表高程,估算含水层总积为106亿立方米。对先前圈定的含水层的体积(长×宽×高)进行简单计算,估计含水层的体积为3.78亿立方米;因此,基于AEM数据的估计是以前估计的两倍以上。根据AEM数据,还圈定了苏石英岩的顶部至深度,范围为0 ~ 90米。
{"title":"Delineation of the hydrogeologic framework of the Big Sioux aquifer near Sioux Falls, South Dakota, using airborne electromagnetic data","authors":"Kristen J. Valseth, G. C. Delzer, C. V. Price","doi":"10.3133/sim3393","DOIUrl":"https://doi.org/10.3133/sim3393","url":null,"abstract":"The U.S. Geological Survey, in cooperation with the City of Sioux Falls, South Dakota, began developing a groundwater-fl ow model of the Big Sioux aquifer in 2014 that will enable the City to make more informed water management decisions, such as delineation of areas of the greatest specifi c yield, which is crucial for locating municipal wells. Innovative tools are being evaluated as part of this study that can improve the delineation of the hydrogeologic framework of the aquifer for use in development of a groundwater-fl ow model, and the approach could have transfer value for similar hydrogeologic settings. The fi rst step in developing a groundwater-fl ow model is determining the hydrogeologic framework (vertical and horizontal extents of the aquifer), which typically is determined by interpreting geologic information from drillers’ logs and surfi cial geology maps. However, well and borehole data only provide hydrogeologic information for a single location; conversely, nearly continuous geophysical data are collected along fl ight lines using airborne electromagnetic (AEM) surveys. These electromagnetic data are collected every 3 meters along a fl ight line (on average) and subsequently can be related to hydrogeologic properties. AEM data, coupled with and constrained by well and borehole data, can substantially improve the accuracy of aquifer hydrogeologic framework delineations and result in better groundwater-fl ow models. AEM data were acquired using the Resolve frequency-domain AEM system to map the Big Sioux aquifer in the region of the city of Sioux Falls. The survey acquired more than 870 line-kilometers of AEM data over a total area of about 145 square kilometers, primarily over the fl ood plain of the Big Sioux River between the cities of Dell Rapids and Sioux Falls. The U.S. Geological Survey inverted the survey data to generate resistivity-depth sections that were used in two-dimensional maps and in three-dimensional volumetric visualizations of the Earth resistivity distribution. Contact lines were drawn using a geographic information system to delineate interpreted geologic stratigraphy. The contact lines were converted to points and then interpolated into a raster surface. The methods used to develop elevation and depth maps of the hydrogeologic framework of the Big Sioux aquifer are described herein. The fi nal AEM interpreted aquifer thickness ranged from 0 to 31 meters with an average thickness of 12.8 meters. The estimated total volume of the aquifer was 1,060,000,000 cubic meters based on the assumption that the top of the aquifer is the land-surface elevation. A simple calculation of the volume (length times width times height) of a previous delineation of the aquifer estimated the aquifer volume at 378,000,000 cubic meters; thus, the estimation based on AEM data is more than twice the previous estimate. The depth to top of Sioux Quartzite, which ranged in depth from 0 to 90 meters, also was delineated from the AEM data.","PeriodicalId":36283,"journal":{"name":"U.S. Geological Survey Scientific Investigations Map","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69292715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
U.S. Geological Survey Scientific Investigations Map
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1