Pub Date : 2025-01-14DOI: 10.1007/s40818-024-00188-7
Ryan P. Creedon, Huy Q. Nguyen, Walter A. Strauss
A Stokes wave is a traveling free-surface periodic water wave that is constant in the direction transverse to the direction of propagation. In 1981 McLean discovered via numerical methods that Stokes waves at infinite depth are unstable with respect to transverse perturbations of the initial data. Even for a Stokes wave that has very small amplitude (varepsilon ), we prove rigorously that transverse perturbations, after linearization, will lead to exponential growth in time. To observe this instability, extensive calculations are required all the way up to order (O(varepsilon ^3)). All previous rigorous results of this type were merely two-dimensional, in the sense that they only treated long-wave perturbations in the longitudinal direction. This is the first rigorous proof of three-dimensional instabilities of Stokes waves.
{"title":"Proof of the transverse instability of Stokes waves","authors":"Ryan P. Creedon, Huy Q. Nguyen, Walter A. Strauss","doi":"10.1007/s40818-024-00188-7","DOIUrl":"10.1007/s40818-024-00188-7","url":null,"abstract":"<div><p>A Stokes wave is a traveling free-surface periodic water wave that is constant in the direction transverse to the direction of propagation. In 1981 McLean discovered via numerical methods that Stokes waves at infinite depth are unstable with respect to transverse perturbations of the initial data. Even for a Stokes wave that has very small amplitude <span>(varepsilon )</span>, we prove rigorously that transverse perturbations, after linearization, will lead to exponential growth in time. To observe this instability, extensive calculations are required all the way up to order <span>(O(varepsilon ^3))</span>. All previous rigorous results of this type were merely two-dimensional, in the sense that they only treated long-wave perturbations in the longitudinal direction. This is the first rigorous proof of three-dimensional instabilities of Stokes waves.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-04DOI: 10.1007/s40818-024-00192-x
Warren Li, Maxime Van de Moortel
We study the interior of black holes in the presence of charged scalar hair of small amplitude (epsilon ) on the event horizon and show their terminal boundary is a crushing Kasner-like singularity. These spacetimes are spherically symmetric, spatially homogeneous and they differ significantly from the hairy black holes with uncharged matter previously studied in [M. Van de Moortel, Violent nonlinear collapse inside charged hairy black holes, Arch. Rational. Mech. Anal., 248, 89, 2024] in that the electric field is dynamical and subject to the backreaction of charged matter. We prove this charged backreaction causes drastically different dynamics compared to the uncharged case that ultimately impact the formation of the spacelike singularity, exhibiting novel phenomena such as