Pub Date : 2024-05-16DOI: 10.3389/fenve.2024.1373881
M. H. Mng’ombe, E. W. Mtonga, B. A. Chunga, R. C. G. Chidya, M. Malota
Introduction: Modeling plays a crucial role in understanding wastewater treatment processes, yet conventional deterministic models face challenges due to complexity and uncertainty. Artificial intelligence offers an alternative, requiring no prior system knowledge. This study tested the reliability of the Adaptive Fuzzy Inference System (ANFIS), an artificial intelligence algorithm that integrates both neural networks and fuzzy logic principles, to predict effluent Biochemical Oxygen Demand. An important indicator of organic pollution in wastewater.Materials and Methods: The ANFIS models were developed and validated with historical wastewater quality data for the Kauma Sewage Treatment Plant located in Lilongwe City, Malawi. A Self Organizing Map (SOM) was applied to extract features of the raw data to enhance the performance of ANFIS. Cost-effective, quicker, and easier-to-measure variables were selected as possible predictors while using their respective correlations with effluent. Influents’ temperature, pH, dissolved oxygen, and effluent chemical oxygen demand were among the model predictors.Results and Discussions: The comparative results demonstrated that for the same model structure, the ANFIS model achieved correlation coefficients (R) of 0.92, 0.90, and 0.81 during training, testing, and validation respectively, whereas the SOM-assisted ANFIS Model achieved R Values of 0.99, 0.87 and 0.94. Overall, despite the slight decrease in R-value during the testing stage, the SOM- assisted ANFIS model outperformed the traditional ANFIS model in terms of predictive capability. A graphic user interface was developed to improve user interaction and friendliness of the developed model. Integration of the developed model with supervisory control and data acquisition system is recommended. The study also recommends widening the application of the developed model, by retraining it with data from other wastewater treatment facilities and rivers in Malawi.
{"title":"Comparative study for the performance of pure artificial intelligence software sensor and self-organizing map assisted software sensor in predicting 5-day biochemical oxygen demand for Kauma Sewage Treatment Plant effluent in Malawi","authors":"M. H. Mng’ombe, E. W. Mtonga, B. A. Chunga, R. C. G. Chidya, M. Malota","doi":"10.3389/fenve.2024.1373881","DOIUrl":"https://doi.org/10.3389/fenve.2024.1373881","url":null,"abstract":"Introduction: Modeling plays a crucial role in understanding wastewater treatment processes, yet conventional deterministic models face challenges due to complexity and uncertainty. Artificial intelligence offers an alternative, requiring no prior system knowledge. This study tested the reliability of the Adaptive Fuzzy Inference System (ANFIS), an artificial intelligence algorithm that integrates both neural networks and fuzzy logic principles, to predict effluent Biochemical Oxygen Demand. An important indicator of organic pollution in wastewater.Materials and Methods: The ANFIS models were developed and validated with historical wastewater quality data for the Kauma Sewage Treatment Plant located in Lilongwe City, Malawi. A Self Organizing Map (SOM) was applied to extract features of the raw data to enhance the performance of ANFIS. Cost-effective, quicker, and easier-to-measure variables were selected as possible predictors while using their respective correlations with effluent. Influents’ temperature, pH, dissolved oxygen, and effluent chemical oxygen demand were among the model predictors.Results and Discussions: The comparative results demonstrated that for the same model structure, the ANFIS model achieved correlation coefficients (R) of 0.92, 0.90, and 0.81 during training, testing, and validation respectively, whereas the SOM-assisted ANFIS Model achieved R Values of 0.99, 0.87 and 0.94. Overall, despite the slight decrease in R-value during the testing stage, the SOM- assisted ANFIS model outperformed the traditional ANFIS model in terms of predictive capability. A graphic user interface was developed to improve user interaction and friendliness of the developed model. Integration of the developed model with supervisory control and data acquisition system is recommended. The study also recommends widening the application of the developed model, by retraining it with data from other wastewater treatment facilities and rivers in Malawi.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140969986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.3389/fenve.2024.1346863
Ana Paula Cremasco Takano, Justyna Rybak, M. M. Veras
Traditional methods of air pollution monitoring require substantial investment in equipment and infrastructure. However, efficient and cost-effective alternatives offer promising solutions for region-specific pollution assessments and understanding their impact on local populations. This review explores examples of low-cost monitoring methods, focusing on natural bioindicators, human interaction-based techniques, and the outcomes associated with air pollution exposure. Bioindicators such as spider webs, lichens, mosses, and Tradescantia pallida (T. pallida) are discussed as potential tools for air pollution monitoring. Human biomonitoring techniques, including the micronucleus assay and the assessment of pulmonary anthracosis, are examined for their ability to provide valuable insights into genotoxic effects and long-term exposure. The advantages and limitations of each method are highlighted. The review advocates for continued research and development to refine these approaches, with the aim of mitigating the adverse health impacts of air pollution on both individuals and communities.
{"title":"Bioindicators and human biomarkers as alternative approaches for cost-effective assessment of air pollution exposure","authors":"Ana Paula Cremasco Takano, Justyna Rybak, M. M. Veras","doi":"10.3389/fenve.2024.1346863","DOIUrl":"https://doi.org/10.3389/fenve.2024.1346863","url":null,"abstract":"Traditional methods of air pollution monitoring require substantial investment in equipment and infrastructure. However, efficient and cost-effective alternatives offer promising solutions for region-specific pollution assessments and understanding their impact on local populations. This review explores examples of low-cost monitoring methods, focusing on natural bioindicators, human interaction-based techniques, and the outcomes associated with air pollution exposure. Bioindicators such as spider webs, lichens, mosses, and Tradescantia pallida (T. pallida) are discussed as potential tools for air pollution monitoring. Human biomonitoring techniques, including the micronucleus assay and the assessment of pulmonary anthracosis, are examined for their ability to provide valuable insights into genotoxic effects and long-term exposure. The advantages and limitations of each method are highlighted. The review advocates for continued research and development to refine these approaches, with the aim of mitigating the adverse health impacts of air pollution on both individuals and communities.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"10 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140478756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.3389/fenve.2024.1347981
Annika Strebel, Martin Behringer, Harald Hilbig, Alisa Machner, Brigitte Helmreich
The review aimed to identify differences and similarities in the adsorption process of five azo dyes [congo red (CR), reactive black 5 (RB5), methyl orange (MO), orange II (OII), and methyl red (MR)] on natural materials, biosorbents, industrial and agricultural waste, or biomass, which are alternatives of costly activated carbon and are locally available. The azo dyes were characterized and compared based on their molecular structure and weight, water solubility, acid dissociation constant, n-octanol-water partition coefficient, and maximum absorbance. RB5 and CR are diazo dyes, whereas MO, OII, and MR are mono-azo dyes. MO, OII, and MR are anionic acid dyes, RB5 is an anionic reactive dye, and CR is an anionic direct dye. CR, RB5, MR, and OII molecules contain one or more sulfonate functional group(s), but MR does not. We performed a literature review based on the following parameters: initial dye concentration, adsorbent dosage, pH, temperature, isotherm, kinetic models, thermodynamic parameters, and synergetic or competitive interactions. The azo dyes tended to adsorb best in an acidic medium and at higher temperatures. The initial dye concentration and adsorbent dosage studies indicated the importance of using an appropriate amount of adsorbent dosage for an effective removal. The studies tended to follow the Langmuir isotherm and kinetic pseudo-second-order model. Most adsorption processes were endothermic and spontaneous, leading to an increase in randomness at the solid-liquid interface. These results indicate similarities between the adsorption process of the five azo dyes. Relevant adsorption mechanisms in azo dye adsorption processes were assumed to be electrostatic forces, hydrogen bonding, and π–π interactions, among others. Nevertheless, the focus of the studies lies more on the development and characterization of adsorbent materials, not on the study of influences from the matrix “industrial wastewater”. Therefore, more research is needed to develop adsorption units for application in textile industries.
{"title":"Anionic azo dyes and their removal from textile wastewater through adsorption by various adsorbents: a critical review","authors":"Annika Strebel, Martin Behringer, Harald Hilbig, Alisa Machner, Brigitte Helmreich","doi":"10.3389/fenve.2024.1347981","DOIUrl":"https://doi.org/10.3389/fenve.2024.1347981","url":null,"abstract":"The review aimed to identify differences and similarities in the adsorption process of five azo dyes [congo red (CR), reactive black 5 (RB5), methyl orange (MO), orange II (OII), and methyl red (MR)] on natural materials, biosorbents, industrial and agricultural waste, or biomass, which are alternatives of costly activated carbon and are locally available. The azo dyes were characterized and compared based on their molecular structure and weight, water solubility, acid dissociation constant, n-octanol-water partition coefficient, and maximum absorbance. RB5 and CR are diazo dyes, whereas MO, OII, and MR are mono-azo dyes. MO, OII, and MR are anionic acid dyes, RB5 is an anionic reactive dye, and CR is an anionic direct dye. CR, RB5, MR, and OII molecules contain one or more sulfonate functional group(s), but MR does not. We performed a literature review based on the following parameters: initial dye concentration, adsorbent dosage, pH, temperature, isotherm, kinetic models, thermodynamic parameters, and synergetic or competitive interactions. The azo dyes tended to adsorb best in an acidic medium and at higher temperatures. The initial dye concentration and adsorbent dosage studies indicated the importance of using an appropriate amount of adsorbent dosage for an effective removal. The studies tended to follow the Langmuir isotherm and kinetic pseudo-second-order model. Most adsorption processes were endothermic and spontaneous, leading to an increase in randomness at the solid-liquid interface. These results indicate similarities between the adsorption process of the five azo dyes. Relevant adsorption mechanisms in azo dye adsorption processes were assumed to be electrostatic forces, hydrogen bonding, and π–π interactions, among others. Nevertheless, the focus of the studies lies more on the development and characterization of adsorbent materials, not on the study of influences from the matrix “industrial wastewater”. Therefore, more research is needed to develop adsorption units for application in textile industries.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"278 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140472729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.3389/fenve.2023.1341816
S. Miri, Anupriya Ravula, Shiva Akhtarian, Seyyed Mohammadreza Davoodi, S. Brar, Richard Martel, T. Rouissi
Stability and reusability properties are the two most important factors that determine an enzyme’s application in industry. To this end, cold-active crude enzymes from a psychrophile (xylene monooxygenase (XMO) and catechol 1,2-dioxygenase (C1,2D) were immobilized on magnetic chitosan microparticles for the first-time using glutaraldehyde as a linker. The potential application of enzyme-loaded magnetic particles to remove and detoxify dissolved p-xylene from water confirmed the synergistic mechanism of degradation for in-situ bioremediation in soil and water. Immobilization was optimized based on four variables, such as magnetic particle (MPs), chitosan, glutaraldehyde, and enzyme concentrations. The immobilized enzymes were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The immobilized enzymes showed improved pH tolerance ranging from 4.0 to 9.0, better temperature stability ranging from 5 to 50, higher storage stability (∼70% activity after 30 days of storage), and more importantly, reusability (∼40% activity after 10 repetitive cycles of usage) compared to their free form. Also, the immobilization of enzymes increased the effectiveness of the enzymatic treatment of p-xylene in soil (10,000 mg/kg) and water (200 mg/L) samples. As a result of the superior catalytic properties of immobilized XMO and C1,2D, they offer great potential for in situ or ex-situ bioremediation of pollutants in soil or water.
{"title":"Immobilized cold-active enzymes onto magnetic chitosan microparticles as a highly stable and reusable carrier for p-xylene biodegradation","authors":"S. Miri, Anupriya Ravula, Shiva Akhtarian, Seyyed Mohammadreza Davoodi, S. Brar, Richard Martel, T. Rouissi","doi":"10.3389/fenve.2023.1341816","DOIUrl":"https://doi.org/10.3389/fenve.2023.1341816","url":null,"abstract":"Stability and reusability properties are the two most important factors that determine an enzyme’s application in industry. To this end, cold-active crude enzymes from a psychrophile (xylene monooxygenase (XMO) and catechol 1,2-dioxygenase (C1,2D) were immobilized on magnetic chitosan microparticles for the first-time using glutaraldehyde as a linker. The potential application of enzyme-loaded magnetic particles to remove and detoxify dissolved p-xylene from water confirmed the synergistic mechanism of degradation for in-situ bioremediation in soil and water. Immobilization was optimized based on four variables, such as magnetic particle (MPs), chitosan, glutaraldehyde, and enzyme concentrations. The immobilized enzymes were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The immobilized enzymes showed improved pH tolerance ranging from 4.0 to 9.0, better temperature stability ranging from 5 to 50, higher storage stability (∼70% activity after 30 days of storage), and more importantly, reusability (∼40% activity after 10 repetitive cycles of usage) compared to their free form. Also, the immobilization of enzymes increased the effectiveness of the enzymatic treatment of p-xylene in soil (10,000 mg/kg) and water (200 mg/L) samples. As a result of the superior catalytic properties of immobilized XMO and C1,2D, they offer great potential for in situ or ex-situ bioremediation of pollutants in soil or water.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"19 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139444370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.3389/fenve.2023.1329101
Huifang Zheng, Qian Chen, Zhijie Chen, Bing-Jie Ni
This review comprehensively explores the synthesis and diverse applications of the Al trimesate-based metal-organic framework, MIL-96 (Al). It begins with an introduction to the structure and properties of MIL-96 (Al), followed by an in-depth discussion of various synthesis strategies, including hydrothermal, microwave irradiation, electrochemical, mechanochemical, and sonochemical methods. The paper then delves into environmental remediation applications, highlighting MIL-96 (Al)’s effectiveness in fluoride and heavy metal removal, as well as in the elimination of volatile organic compounds (VOCs) and CO2. The review further examines the role of MIL-96 (Al) in catalysis and its emerging significance in battery technology, showcasing its versatility and potential in sustainable energy solutions. Finally, the paper concludes with perspectives on future research directions, emphasizing the ongoing development and optimization of MIL-96 (Al) for environmental and energy-related applications.
{"title":"Synthesis and application of Al trimesate-based metal-organic framework: a critical review","authors":"Huifang Zheng, Qian Chen, Zhijie Chen, Bing-Jie Ni","doi":"10.3389/fenve.2023.1329101","DOIUrl":"https://doi.org/10.3389/fenve.2023.1329101","url":null,"abstract":"This review comprehensively explores the synthesis and diverse applications of the Al trimesate-based metal-organic framework, MIL-96 (Al). It begins with an introduction to the structure and properties of MIL-96 (Al), followed by an in-depth discussion of various synthesis strategies, including hydrothermal, microwave irradiation, electrochemical, mechanochemical, and sonochemical methods. The paper then delves into environmental remediation applications, highlighting MIL-96 (Al)’s effectiveness in fluoride and heavy metal removal, as well as in the elimination of volatile organic compounds (VOCs) and CO2. The review further examines the role of MIL-96 (Al) in catalysis and its emerging significance in battery technology, showcasing its versatility and potential in sustainable energy solutions. Finally, the paper concludes with perspectives on future research directions, emphasizing the ongoing development and optimization of MIL-96 (Al) for environmental and energy-related applications.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"51 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139445762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-16DOI: 10.3389/fenve.2023.1270854
M. Hamoda, Noura S. AL Rashidi
The COVID-19 pandemic is considered one of the most significant threats to health. The effect of the pandemic on performance of wastewater treatment plants has not received much attention in the literature. This study assessed the impact of Coronavirus pandemic on the wastewater quantity, characteristics, treatment processes, and water reuse in Kuwait. It focused on three municipal wastewater treatment plants (WWTPs) with different design capacities, namely Sulaibiya (600,000 m3/d), Kabd (180,000 m3/d), and Umm Al-Hayman (27,000 m3/d), all using tertiary treatment. Daily data records were obtained on influent and effluent over the years 2018–2020 (before and during the pandemic). In addition, influent and effluent samples were collected from the Sulaibiya and Kabd plants for laboratory analysis to determine the effect of increase in the use of home disinfectants. The results indicate an increase (<50%) in the average daily flow rates received in WWTPs during the 2020 home quarantine lockdowns. Statistical analysis showed stability of the Sulaibiya in BOD5, COD, and TSS removal efficiency while a decrease in the Kabd and UAH plants removal efficiency was observed during the pandemic. During the lockdown period, GC-MS analysis showed a high probability of chloroxylenol (>90), one of the main components of Dettol disinfectant, existing in the raw wastewater samples while the GC-FID analysis indicated the presence of (PAH) as emerging contaminants, at higher concentrations in the influent and effluent samples. The pandemic adversely affected wastewater treatment plant performance and excessive use of Dettol disinfectant by homes resulted in the presence of objectionable organic pollutants in the tertiary-treated effluent which would impair water reuse. Reverse osmosis process used in Sulaibiya plant proved to be effective in removing residual organics and improving effluent quality for reuse during the pandemic.
{"title":"Impact of Corona virus pandemic on wastewater characteristics, treatment, and water reuse in a municipal plant","authors":"M. Hamoda, Noura S. AL Rashidi","doi":"10.3389/fenve.2023.1270854","DOIUrl":"https://doi.org/10.3389/fenve.2023.1270854","url":null,"abstract":"The COVID-19 pandemic is considered one of the most significant threats to health. The effect of the pandemic on performance of wastewater treatment plants has not received much attention in the literature. This study assessed the impact of Coronavirus pandemic on the wastewater quantity, characteristics, treatment processes, and water reuse in Kuwait. It focused on three municipal wastewater treatment plants (WWTPs) with different design capacities, namely Sulaibiya (600,000 m3/d), Kabd (180,000 m3/d), and Umm Al-Hayman (27,000 m3/d), all using tertiary treatment. Daily data records were obtained on influent and effluent over the years 2018–2020 (before and during the pandemic). In addition, influent and effluent samples were collected from the Sulaibiya and Kabd plants for laboratory analysis to determine the effect of increase in the use of home disinfectants. The results indicate an increase (<50%) in the average daily flow rates received in WWTPs during the 2020 home quarantine lockdowns. Statistical analysis showed stability of the Sulaibiya in BOD5, COD, and TSS removal efficiency while a decrease in the Kabd and UAH plants removal efficiency was observed during the pandemic. During the lockdown period, GC-MS analysis showed a high probability of chloroxylenol (>90), one of the main components of Dettol disinfectant, existing in the raw wastewater samples while the GC-FID analysis indicated the presence of (PAH) as emerging contaminants, at higher concentrations in the influent and effluent samples. The pandemic adversely affected wastewater treatment plant performance and excessive use of Dettol disinfectant by homes resulted in the presence of objectionable organic pollutants in the tertiary-treated effluent which would impair water reuse. Reverse osmosis process used in Sulaibiya plant proved to be effective in removing residual organics and improving effluent quality for reuse during the pandemic.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"30 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139270333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3389/fenve.2023.1228992
Kristina Mikhailovna Maliutina, Joy Esohe Omoriyekomwan, Chuanxin He, Liangdong Fan, Andrea Folli
Biomass derived electrocatalysts with rationally designed activity, selectivity, and stability present a major sustainable approach for the electrochemical production of fuels and value-added chemicals. This review presents recent advances in the field of biomass-derived electrocatalytic nanostructures for the hydrogen evolution reaction (HER) and the oxygen reduction and evolution reactions (oxygen reduction reaction and oxygen evolution reaction), that are subject of major research efforts, as well as public and private investment, as they will play a crucial role in the energy transition and in achieving net zero carbon emissions. The review summarises experimental and theoretical investigations aiming at tuning electrocatalytic performances of sustainable C-based nanostructured materials, and present opportunities for future commercialization of innovative energy materials and applications. In reviewing relevant literature in the field, we focus on the correlation between electrocatalytic activity/selectivity and synthesis methods, composition, physical chemical characteristics, in the attempt to uncover a clear structure-activity relationship. Furthermore, this study provides a critical comparison of the different electrocatalysts in light of their catalytic mechanisms, limiting phenomena, and practical applications for sustainable future technologies.
{"title":"Biomass-derived carbon nanostructures and their applications as electrocatalysts for hydrogen evolution and oxygen reduction/evolution","authors":"Kristina Mikhailovna Maliutina, Joy Esohe Omoriyekomwan, Chuanxin He, Liangdong Fan, Andrea Folli","doi":"10.3389/fenve.2023.1228992","DOIUrl":"https://doi.org/10.3389/fenve.2023.1228992","url":null,"abstract":"Biomass derived electrocatalysts with rationally designed activity, selectivity, and stability present a major sustainable approach for the electrochemical production of fuels and value-added chemicals. This review presents recent advances in the field of biomass-derived electrocatalytic nanostructures for the hydrogen evolution reaction (HER) and the oxygen reduction and evolution reactions (oxygen reduction reaction and oxygen evolution reaction), that are subject of major research efforts, as well as public and private investment, as they will play a crucial role in the energy transition and in achieving net zero carbon emissions. The review summarises experimental and theoretical investigations aiming at tuning electrocatalytic performances of sustainable C-based nanostructured materials, and present opportunities for future commercialization of innovative energy materials and applications. In reviewing relevant literature in the field, we focus on the correlation between electrocatalytic activity/selectivity and synthesis methods, composition, physical chemical characteristics, in the attempt to uncover a clear structure-activity relationship. Furthermore, this study provides a critical comparison of the different electrocatalysts in light of their catalytic mechanisms, limiting phenomena, and practical applications for sustainable future technologies.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"75 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135271209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Complex interactions between turbulence and sediment movement around bridge piers result in bridge damage. However, the scouring mechanism remains ambiguous owing to insufficient quantitative experimental analysis pertaining to scouring topographic characteristics and their relationships with turbulent flow. Hence, an experiment is performed in this study to clarify the relationships between turbulent vortex structures and scour topography. First, we measure the two-dimensional flow fields around a bridge pier using particle image velocimetry systems and then establish a three-dimensional scour topography using the structure-from-motion technique. Subsequently, according to the unified coordinate system, we perform an innovative quantitative analysis of the scouring topography and the distributions of the shear force and horseshoe vortex around the pier. The results show the maximum depth of the scour hole increases linearly with the flow intensity. For a single scouring hole, both the cross-sectional area and volume of the scour hole vary parabolically with the height from the pit bottom. The coupling of the flow and bed topography forms the maximum scour hole via shear stress, and the large streamwise vortices on both sides of the bridge pier result in the formation of long shallow grooves on both sides of the sand dune downstream.
{"title":"Experimental investigation of the interconnections between turbulent structure and scouring topographic characteristics","authors":"Jian Li, Naixing Xu, Hao Wang, Dabao Fu, Xiaoxiao Liu, Wei Wu","doi":"10.3389/fenve.2023.1269708","DOIUrl":"https://doi.org/10.3389/fenve.2023.1269708","url":null,"abstract":"Complex interactions between turbulence and sediment movement around bridge piers result in bridge damage. However, the scouring mechanism remains ambiguous owing to insufficient quantitative experimental analysis pertaining to scouring topographic characteristics and their relationships with turbulent flow. Hence, an experiment is performed in this study to clarify the relationships between turbulent vortex structures and scour topography. First, we measure the two-dimensional flow fields around a bridge pier using particle image velocimetry systems and then establish a three-dimensional scour topography using the structure-from-motion technique. Subsequently, according to the unified coordinate system, we perform an innovative quantitative analysis of the scouring topography and the distributions of the shear force and horseshoe vortex around the pier. The results show the maximum depth of the scour hole increases linearly with the flow intensity. For a single scouring hole, both the cross-sectional area and volume of the scour hole vary parabolically with the height from the pit bottom. The coupling of the flow and bed topography forms the maximum scour hole via shear stress, and the large streamwise vortices on both sides of the bridge pier result in the formation of long shallow grooves on both sides of the sand dune downstream.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-11DOI: 10.3389/fenve.2023.1235557
Ali Pourzangbar, Mahdi Jalali, Maurizio Brocchini
This study provides an extensive review of over 200 journal papers focusing on Machine Learning (ML) algorithms’ use for promoting a sustainable management of the marine and coastal environments. The research covers various facets of ML algorithms, including data preprocessing and handling, modeling algorithms for distinct phenomena, model evaluation, and use of dynamic and integrated models. Given that machine learning modeling relies on experience or trial-and-error, examining previous applications in marine and coastal modeling is proven to be beneficial. The performance of different ML methods used to predict wave heights was analyzed to ascertain which method was superior with various datasets. The analysis of these papers revealed that properly developed ML methods could successfully be applied to multiple aspects. Areas of application include data collection and analysis, pollutant and sediment transport, image processing and deep learning, and identification of potential regions for aquaculture and wave energy activities. Additionally, ML methods aid in structural design and optimization and in the prediction and classification of oceanographic parameters. However, despite their potential advantages, dynamic and integrated ML models remain underutilized in marine projects. This research provides insights into ML’s application and invites future investigations to exploit ML’s untapped potential in marine and coastal sustainability.
{"title":"Machine learning application in modelling marine and coastal phenomena: a critical review","authors":"Ali Pourzangbar, Mahdi Jalali, Maurizio Brocchini","doi":"10.3389/fenve.2023.1235557","DOIUrl":"https://doi.org/10.3389/fenve.2023.1235557","url":null,"abstract":"This study provides an extensive review of over 200 journal papers focusing on Machine Learning (ML) algorithms’ use for promoting a sustainable management of the marine and coastal environments. The research covers various facets of ML algorithms, including data preprocessing and handling, modeling algorithms for distinct phenomena, model evaluation, and use of dynamic and integrated models. Given that machine learning modeling relies on experience or trial-and-error, examining previous applications in marine and coastal modeling is proven to be beneficial. The performance of different ML methods used to predict wave heights was analyzed to ascertain which method was superior with various datasets. The analysis of these papers revealed that properly developed ML methods could successfully be applied to multiple aspects. Areas of application include data collection and analysis, pollutant and sediment transport, image processing and deep learning, and identification of potential regions for aquaculture and wave energy activities. Additionally, ML methods aid in structural design and optimization and in the prediction and classification of oceanographic parameters. However, despite their potential advantages, dynamic and integrated ML models remain underutilized in marine projects. This research provides insights into ML’s application and invites future investigations to exploit ML’s untapped potential in marine and coastal sustainability.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135981554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.3389/fenve.2023.1249931
Maria Laura Tummino, C. Vineis, A. Varesano, L. Liotta, Monica Rigoletto, Enzo Laurenti, F. Deganello
Perovskite-type compounds have found application in environmental remediation and in clean energy production, fundamental sectors for sustainable development. A challenge for these materials is the fine-tuning of their chemical composition and their chemical-physical characteristics, for example, microstructure, morphology and ability to form oxygen vacancies, through the introduction of dopant elements. In this work, we studied the effect of Cu doping at the B-site of a Ce, Co-doped strontium ferrate perovskite with chemical composition Sr0.85Ce0.15Fe0.67Co0.33O3-δ. Indeed, Sr0.85Ce0.15Fe0.67Co0.23Cu0.10O3-δ and Sr0.85Ce0.15Fe0.67Co0.13Cu0.20O3-δ powders, where the B-site was codoped with both cobalt and copper, were synthesised by solution combustion synthesis and characterised for their physical-chemical properties by a multi-analytical approach, to assess their behaviour when subjected to different activation methods. The two codoped perovskites were tested 1) as catalysts in the oxidation of soot after activation at high temperatures, 2) as antibacterial agents in ambient conditions or activated by both UV exposure and low-temperature excitation to induce the generation of reactive species. Results demonstrated that these compounds react differently to various stimuli and that the increasing amount of copper, together with the presence of segregated ceria phase, influenced the materials’ features and performances. The knowledge gained on the structure-properties relationships of these materials can inspire other research studies on perovskite oxides application as multifunctional materials for the benefit of the environment, society and economy.
{"title":"Sr0.85Ce0.15Fe0.67Co0.33-xCuxO3 perovskite oxides: effect of B-site copper codoping on the physicochemical, catalytic and antibacterial properties upon UV or thermal activation","authors":"Maria Laura Tummino, C. Vineis, A. Varesano, L. Liotta, Monica Rigoletto, Enzo Laurenti, F. Deganello","doi":"10.3389/fenve.2023.1249931","DOIUrl":"https://doi.org/10.3389/fenve.2023.1249931","url":null,"abstract":"Perovskite-type compounds have found application in environmental remediation and in clean energy production, fundamental sectors for sustainable development. A challenge for these materials is the fine-tuning of their chemical composition and their chemical-physical characteristics, for example, microstructure, morphology and ability to form oxygen vacancies, through the introduction of dopant elements. In this work, we studied the effect of Cu doping at the B-site of a Ce, Co-doped strontium ferrate perovskite with chemical composition Sr0.85Ce0.15Fe0.67Co0.33O3-δ. Indeed, Sr0.85Ce0.15Fe0.67Co0.23Cu0.10O3-δ and Sr0.85Ce0.15Fe0.67Co0.13Cu0.20O3-δ powders, where the B-site was codoped with both cobalt and copper, were synthesised by solution combustion synthesis and characterised for their physical-chemical properties by a multi-analytical approach, to assess their behaviour when subjected to different activation methods. The two codoped perovskites were tested 1) as catalysts in the oxidation of soot after activation at high temperatures, 2) as antibacterial agents in ambient conditions or activated by both UV exposure and low-temperature excitation to induce the generation of reactive species. Results demonstrated that these compounds react differently to various stimuli and that the increasing amount of copper, together with the presence of segregated ceria phase, influenced the materials’ features and performances. The knowledge gained on the structure-properties relationships of these materials can inspire other research studies on perovskite oxides application as multifunctional materials for the benefit of the environment, society and economy.","PeriodicalId":364056,"journal":{"name":"Frontiers in Environmental Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116671277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}