Miguel Álvarez-González, Paula Suarez-Bregua, Graham J. Pierce, Camilo Saavedra
Research on the ecology and biology of marine mammal populations is necessary to understand ecosystem dynamics and to support conservation management. Emerging monitoring tools and instruments offer the opportunity to obtain such information in an affordable and effective way. In recent years, unmanned aerial vehicles (UAVs) have become an important tool in the study of marine mammals. Here, we reviewed 169 research articles using UAVs to study marine mammals, published up until December 2022. The goals of these studies included estimating the number of individuals in populations and groups via photo-identification, determining biometrics and body condition through photogrammetry, collecting blow samples, and studying behavioural patterns. UAVs can be a valuable, non-invasive, and useful tool for a wide range of applications in marine mammal research. However, it is important to consider some limitations of this technology, mainly associated with autonomy, resistance to the marine environment, and data processing time, which could probably be overcome in the near future.
{"title":"Unmanned Aerial Vehicles (UAVs) in Marine Mammal Research: A Review of Current Applications and Challenges","authors":"Miguel Álvarez-González, Paula Suarez-Bregua, Graham J. Pierce, Camilo Saavedra","doi":"10.3390/drones7110667","DOIUrl":"https://doi.org/10.3390/drones7110667","url":null,"abstract":"Research on the ecology and biology of marine mammal populations is necessary to understand ecosystem dynamics and to support conservation management. Emerging monitoring tools and instruments offer the opportunity to obtain such information in an affordable and effective way. In recent years, unmanned aerial vehicles (UAVs) have become an important tool in the study of marine mammals. Here, we reviewed 169 research articles using UAVs to study marine mammals, published up until December 2022. The goals of these studies included estimating the number of individuals in populations and groups via photo-identification, determining biometrics and body condition through photogrammetry, collecting blow samples, and studying behavioural patterns. UAVs can be a valuable, non-invasive, and useful tool for a wide range of applications in marine mammal research. However, it is important to consider some limitations of this technology, mainly associated with autonomy, resistance to the marine environment, and data processing time, which could probably be overcome in the near future.","PeriodicalId":36448,"journal":{"name":"Drones","volume":" 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135242239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio M. Cabrera-Ariza, Miguel Peralta-Aguilera, Paula V. Henríquez-Hernández, Rómulo Santelices-Moya
This study explores the use of unmanned aerial vehicles (UAVs) and machine learning algorithms for the identification of Nothofagus alessandrii (ruil) species in the Mediterranean forests of Chile. The endangered nature of this species, coupled with habitat loss and environmental stressors, necessitates efficient monitoring and conservation efforts. UAVs equipped with high-resolution sensors capture orthophotos, enabling the development of classification models using supervised machine learning techniques. Three classification algorithms—Random Forest (RF), Support Vector Machine (SVM), and Maximum Likelihood (ML)—are evaluated, both at the Pixel- and Object-Based levels, across three study areas. The results reveal that RF consistently demonstrates strong classification performance, followed by SVM and ML. The choice of algorithm and training approach significantly impacts the outcomes, highlighting the importance of tailored selection based on project requirements. These findings contribute to enhancing species identification accuracy in remote sensing applications, supporting biodiversity conservation and ecological research efforts.
{"title":"Using UAVs and Machine Learning for Nothofagus alessandrii Species Identification in Mediterranean Forests","authors":"Antonio M. Cabrera-Ariza, Miguel Peralta-Aguilera, Paula V. Henríquez-Hernández, Rómulo Santelices-Moya","doi":"10.3390/drones7110668","DOIUrl":"https://doi.org/10.3390/drones7110668","url":null,"abstract":"This study explores the use of unmanned aerial vehicles (UAVs) and machine learning algorithms for the identification of Nothofagus alessandrii (ruil) species in the Mediterranean forests of Chile. The endangered nature of this species, coupled with habitat loss and environmental stressors, necessitates efficient monitoring and conservation efforts. UAVs equipped with high-resolution sensors capture orthophotos, enabling the development of classification models using supervised machine learning techniques. Three classification algorithms—Random Forest (RF), Support Vector Machine (SVM), and Maximum Likelihood (ML)—are evaluated, both at the Pixel- and Object-Based levels, across three study areas. The results reveal that RF consistently demonstrates strong classification performance, followed by SVM and ML. The choice of algorithm and training approach significantly impacts the outcomes, highlighting the importance of tailored selection based on project requirements. These findings contribute to enhancing species identification accuracy in remote sensing applications, supporting biodiversity conservation and ecological research efforts.","PeriodicalId":36448,"journal":{"name":"Drones","volume":" 24","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135286119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edvinas Tiškus, Martynas Bučas, Jonas Gintauskas, Marija Kataržytė, Diana Vaičiūtė
This study delves into the application of the U-Net convolutional neural network (CNN) model for beach wrack (BW) segmentation and monitoring in coastal environments using multispectral imagery. Through the utilization of different input configurations, namely, “RGB”, “RGB and height”, “5 bands”, “5 bands and height”, and “Band ratio indices”, this research provides insights into the optimal dataset combination for the U-Net model. The results indicate promising performance with the “RGB” combination, achieving a moderate Intersection over Union (IoU) of 0.42 for BW and an overall accuracy of IoU = 0.59. However, challenges arise in the segmentation of potential BW, primarily attributed to the dynamics of light in aquatic environments. Factors such as sun glint, wave patterns, and turbidity also influenced model accuracy. Contrary to the hypothesis, integrating all spectral bands did not enhance the model’s efficacy, and adding height data acquired from UAVs decreased model precision in both RGB and multispectral scenarios. This study reaffirms the potential of U-Net CNNs for BW detection, emphasizing the suitability of the suggested method for deployment in diverse beach geomorphology, requiring no high-end computing resources, and thereby facilitating more accessible applications in coastal monitoring and management.
{"title":"U-Net Performance for Beach Wrack Segmentation: Effects of UAV Camera Bands, Height Measurements, and Spectral Indices","authors":"Edvinas Tiškus, Martynas Bučas, Jonas Gintauskas, Marija Kataržytė, Diana Vaičiūtė","doi":"10.3390/drones7110670","DOIUrl":"https://doi.org/10.3390/drones7110670","url":null,"abstract":"This study delves into the application of the U-Net convolutional neural network (CNN) model for beach wrack (BW) segmentation and monitoring in coastal environments using multispectral imagery. Through the utilization of different input configurations, namely, “RGB”, “RGB and height”, “5 bands”, “5 bands and height”, and “Band ratio indices”, this research provides insights into the optimal dataset combination for the U-Net model. The results indicate promising performance with the “RGB” combination, achieving a moderate Intersection over Union (IoU) of 0.42 for BW and an overall accuracy of IoU = 0.59. However, challenges arise in the segmentation of potential BW, primarily attributed to the dynamics of light in aquatic environments. Factors such as sun glint, wave patterns, and turbidity also influenced model accuracy. Contrary to the hypothesis, integrating all spectral bands did not enhance the model’s efficacy, and adding height data acquired from UAVs decreased model precision in both RGB and multispectral scenarios. This study reaffirms the potential of U-Net CNNs for BW detection, emphasizing the suitability of the suggested method for deployment in diverse beach geomorphology, requiring no high-end computing resources, and thereby facilitating more accessible applications in coastal monitoring and management.","PeriodicalId":36448,"journal":{"name":"Drones","volume":" 16","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gi-Hun Gwon, Jin-Hwan Lee, In-Ho Kim, Seung-Chan Baek, Hyung-Jo Jung
As technology advances, the use of unmanned aerial vehicles (UAVs) and image sensors for structural monitoring and diagnostics is becoming increasingly critical. This approach enables the efficient inspection and assessment of structural conditions. Furthermore, the integration of deep learning techniques has been proven to be highly effective in detecting damage from structural images, as demonstrated in our study. To enable effective learning by deep learning models, a substantial volume of data is crucial, but collecting appropriate instances of structural damage from real-world scenarios poses challenges and demands specialized knowledge, as well as significant time and resources for labeling. In this study, we propose a methodology that utilizes a generative adversarial network (GAN) for image-to-image translation, with the objective of generating synthetic structural damage data to augment the dataset. Initially, a GAN-based image generation model was trained using paired datasets. When provided with a mask image, this model generated an RGB image based on the annotations. The subsequent step generated domain-specific mask images, a critical task that improved the data augmentation process. These mask images were designed based on prior knowledge to suit the specific characteristics and requirements of the structural damage dataset. These generated masks were then used by the GAN model to produce new RGB image data incorporating various types of damage. In the experimental validation conducted across the three datasets to assess the image generation for data augmentation, our results demonstrated that the generated images closely resembled actual images while effectively conveying information about the newly introduced damage. Furthermore, the experimental validation of damage detection with augmented data entailed a comparative analysis between the performance achieved solely with the original dataset and that attained with the incorporation of additional augmented data. The results for damage detection consistently demonstrated that the utilization of augmented data enhanced performance when compared to relying solely on the original images.
{"title":"Image-to-Image Translation-Based Structural Damage Data Augmentation for Infrastructure Inspection Using Unmanned Aerial Vehicle","authors":"Gi-Hun Gwon, Jin-Hwan Lee, In-Ho Kim, Seung-Chan Baek, Hyung-Jo Jung","doi":"10.3390/drones7110666","DOIUrl":"https://doi.org/10.3390/drones7110666","url":null,"abstract":"As technology advances, the use of unmanned aerial vehicles (UAVs) and image sensors for structural monitoring and diagnostics is becoming increasingly critical. This approach enables the efficient inspection and assessment of structural conditions. Furthermore, the integration of deep learning techniques has been proven to be highly effective in detecting damage from structural images, as demonstrated in our study. To enable effective learning by deep learning models, a substantial volume of data is crucial, but collecting appropriate instances of structural damage from real-world scenarios poses challenges and demands specialized knowledge, as well as significant time and resources for labeling. In this study, we propose a methodology that utilizes a generative adversarial network (GAN) for image-to-image translation, with the objective of generating synthetic structural damage data to augment the dataset. Initially, a GAN-based image generation model was trained using paired datasets. When provided with a mask image, this model generated an RGB image based on the annotations. The subsequent step generated domain-specific mask images, a critical task that improved the data augmentation process. These mask images were designed based on prior knowledge to suit the specific characteristics and requirements of the structural damage dataset. These generated masks were then used by the GAN model to produce new RGB image data incorporating various types of damage. In the experimental validation conducted across the three datasets to assess the image generation for data augmentation, our results demonstrated that the generated images closely resembled actual images while effectively conveying information about the newly introduced damage. Furthermore, the experimental validation of damage detection with augmented data entailed a comparative analysis between the performance achieved solely with the original dataset and that attained with the incorporation of additional augmented data. The results for damage detection consistently demonstrated that the utilization of augmented data enhanced performance when compared to relying solely on the original images.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"49 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135430510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a robust path-following control strategy is proposed to deal with the path-following problem of the underactuated autonomous underwater vehicle (AUV) with multiple uncertainties and input saturation, and the effectiveness of the proposed control strategy is verified by semi-physical simulation experiments. Firstly, the control laws are constructed based on the traditional backstepping method; the multiple uncertainties are treated as lumped uncertainties, which can be estimated and eliminated by the employed extended state observers (ESOs). In addition, the influence of input saturation can be compensated by the designed auxiliary dynamic compensators. Secondly, to simplify controller design and address the “complexity explosion”, two command filters are used to obtain the estimated value of the unknown sideslip angular velocity and the desired yaw angular acceleration, respectively. Finally, the superiority and robustness of the proposed control strategy are verified through computer simulation. A semi-physical simulation experiment platform is built based on the NI Compact cRIO-9068 and PLC S7-1200 to further demonstrate the effectiveness of the proposed control strategy.
{"title":"Robust Path-Following Control for AUV under Multiple Uncertainties and Input Saturation","authors":"Jianming Miao, Xingyu Sun, Qichao Chen, Haosu Zhang, Wenchao Liu, Yanyun Wang","doi":"10.3390/drones7110665","DOIUrl":"https://doi.org/10.3390/drones7110665","url":null,"abstract":"In this paper, a robust path-following control strategy is proposed to deal with the path-following problem of the underactuated autonomous underwater vehicle (AUV) with multiple uncertainties and input saturation, and the effectiveness of the proposed control strategy is verified by semi-physical simulation experiments. Firstly, the control laws are constructed based on the traditional backstepping method; the multiple uncertainties are treated as lumped uncertainties, which can be estimated and eliminated by the employed extended state observers (ESOs). In addition, the influence of input saturation can be compensated by the designed auxiliary dynamic compensators. Secondly, to simplify controller design and address the “complexity explosion”, two command filters are used to obtain the estimated value of the unknown sideslip angular velocity and the desired yaw angular acceleration, respectively. Finally, the superiority and robustness of the proposed control strategy are verified through computer simulation. A semi-physical simulation experiment platform is built based on the NI Compact cRIO-9068 and PLC S7-1200 to further demonstrate the effectiveness of the proposed control strategy.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"32 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135343373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jichen Yan, Xiaoguang Zhang, Siyang Shen, Xing He, Xuan Xia, Nan Li, Song Wang, Yuxuan Yang, Ning Ding
In the published work [...]
在已发表的著作中[…]
{"title":"Correction: Yan et al. A Real-Time Strand Breakage Detection Method for Power Line Inspection with UAVs. Drones 2023, 7, 574","authors":"Jichen Yan, Xiaoguang Zhang, Siyang Shen, Xing He, Xuan Xia, Nan Li, Song Wang, Yuxuan Yang, Ning Ding","doi":"10.3390/drones7110663","DOIUrl":"https://doi.org/10.3390/drones7110663","url":null,"abstract":"In the published work [...]","PeriodicalId":36448,"journal":{"name":"Drones","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135432711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peng Xiao, Ni Li, Feng Xie, Haihong Ni, Min Zhang, Ban Wang
Unmanned aerial vehicles (UAVs) multi-area coverage-path planning has a broad range of applications in agricultural mapping and military reconnaissance. Compared to homogeneous UAVs, heterogeneous UAVs have higher application value due to their superior flexibility and efficiency. Nevertheless, variations in performance parameters among heterogeneous UAVs can significantly amplify computational complexity, posing challenges to solving the multi-region coverage path-planning problem. Consequently, this study studies a clustering-based method to tackle the multi-region coverage path-planning problem of heterogeneous UAVs. First, the constraints necessary during the planning process are analyzed, and a planning formula based on an integer linear programming model is established. Subsequently, this problem is decomposed into regional allocation and visiting order optimization subproblems. This study proposes a novel clustering algorithm that utilizes centroid iteration and spatiotemporal similarity to allocate regions and adopts the nearest-to-end policy to optimize the visiting order. Additionally, a distance-based bilateral shortest-selection strategy is proposed to generate region-scanning trajectories, which serve as trajectory references for real flight. Simulation results in this study prove the effective performance of the proposed clustering algorithm and region-scanning strategy.
{"title":"Clustering-Based Multi-Region Coverage-Path Planning of Heterogeneous UAVs","authors":"Peng Xiao, Ni Li, Feng Xie, Haihong Ni, Min Zhang, Ban Wang","doi":"10.3390/drones7110664","DOIUrl":"https://doi.org/10.3390/drones7110664","url":null,"abstract":"Unmanned aerial vehicles (UAVs) multi-area coverage-path planning has a broad range of applications in agricultural mapping and military reconnaissance. Compared to homogeneous UAVs, heterogeneous UAVs have higher application value due to their superior flexibility and efficiency. Nevertheless, variations in performance parameters among heterogeneous UAVs can significantly amplify computational complexity, posing challenges to solving the multi-region coverage path-planning problem. Consequently, this study studies a clustering-based method to tackle the multi-region coverage path-planning problem of heterogeneous UAVs. First, the constraints necessary during the planning process are analyzed, and a planning formula based on an integer linear programming model is established. Subsequently, this problem is decomposed into regional allocation and visiting order optimization subproblems. This study proposes a novel clustering algorithm that utilizes centroid iteration and spatiotemporal similarity to allocate regions and adopts the nearest-to-end policy to optimize the visiting order. Additionally, a distance-based bilateral shortest-selection strategy is proposed to generate region-scanning trajectories, which serve as trajectory references for real flight. Simulation results in this study prove the effective performance of the proposed clustering algorithm and region-scanning strategy.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"65 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135474605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter Povlsen, Dan Bruhn, Cino Pertoldi, Sussie Pagh
Wildlife abundance surveys are important tools for making decisions regarding nature conservation and management. Cryptic and nocturnal mammals can be difficult to monitor, and methods to obtain more accurate data on density and population trends of these species are needed. We propose a novel monitoring method using an aerial drone with a laser rangefinder and high zoom capabilities for thermal imagery. By manually operating the drone, the survey area can be initially scanned in a radius of several kilometers, and when a point of interest is observed, animals could be identified from up to one kilometer away by zooming in while the drone maintains an altitude of 120 m. With the laser rangefinder, a precise coordinate of the detected animal could be recorded instantly. Over ten surveys, the scouring drone method recorded significantly more hares than traditional transect spotlight count surveys, conducted by trained volunteers scanning the same farmland area within the same timeframe (p = 0.002, Wilcoxon paired rank test). The difference between the drone method and the transect spotlight method was hare density-dependent (R = 0.45, p = 0.19, Pearson’s product–moment correlation); the larger the density of hares, the larger the difference between the two methods to the benefit of the drone method. There was a linear relation between the records of deer by the drone and by spotlight (R = 0.69, p = 0.027), while no relation was found between the records of carnivores by drone and spotlight counts. This may be due to carnivores’ speed and vigilance or lack of data. Furthermore, the drone method could cover up to three times the area within the same timeframe as the transect spotlight counts.
野生动物数量调查是制定有关自然保护和管理决策的重要工具。隐蔽性和夜行性哺乳动物很难监测,需要获得这些物种密度和种群趋势的更准确数据的方法。我们提出了一种新的监测方法,使用具有激光测距仪和高变焦能力的空中无人机进行热成像。通过手动操作无人机,最初可以扫描几公里半径的调查区域,当观察到感兴趣的点时,可以在无人机保持120米的高度时通过放大从一公里外识别动物。使用激光测距仪,可以立即记录被探测动物的精确坐标。在10次调查中,无人机搜索法比传统的样条射光计数调查记录了更多的野兔,传统的样条射光计数调查是由训练有素的志愿者在相同的时间框架内扫描相同的农田区域(p = 0.002, Wilcoxon配对秩检验)。无人机法与样条聚焦法的差异与密度相关(R = 0.45, p = 0.19, Pearson积矩相关);野兔的密度越大,两种方法之间的差异越大,无人机方法的优势就越大。无人机记录的鹿群数量与聚光灯记录的鹿群数量呈线性相关(R = 0.69, p = 0.027),而无人机记录的食肉动物数量与聚光灯记录的数量无相关性。这可能是由于食肉动物的速度和警惕性或缺乏数据。此外,无人机方法可以在样条聚光灯计数的相同时间范围内覆盖多达三倍的区域。
{"title":"A Novel Scouring Method to Monitor Nocturnal Mammals Using Uncrewed Aerial Vehicles and Thermal Cameras—A Comparison to Line Transect Spotlight Counts","authors":"Peter Povlsen, Dan Bruhn, Cino Pertoldi, Sussie Pagh","doi":"10.3390/drones7110661","DOIUrl":"https://doi.org/10.3390/drones7110661","url":null,"abstract":"Wildlife abundance surveys are important tools for making decisions regarding nature conservation and management. Cryptic and nocturnal mammals can be difficult to monitor, and methods to obtain more accurate data on density and population trends of these species are needed. We propose a novel monitoring method using an aerial drone with a laser rangefinder and high zoom capabilities for thermal imagery. By manually operating the drone, the survey area can be initially scanned in a radius of several kilometers, and when a point of interest is observed, animals could be identified from up to one kilometer away by zooming in while the drone maintains an altitude of 120 m. With the laser rangefinder, a precise coordinate of the detected animal could be recorded instantly. Over ten surveys, the scouring drone method recorded significantly more hares than traditional transect spotlight count surveys, conducted by trained volunteers scanning the same farmland area within the same timeframe (p = 0.002, Wilcoxon paired rank test). The difference between the drone method and the transect spotlight method was hare density-dependent (R = 0.45, p = 0.19, Pearson’s product–moment correlation); the larger the density of hares, the larger the difference between the two methods to the benefit of the drone method. There was a linear relation between the records of deer by the drone and by spotlight (R = 0.69, p = 0.027), while no relation was found between the records of carnivores by drone and spotlight counts. This may be due to carnivores’ speed and vigilance or lack of data. Furthermore, the drone method could cover up to three times the area within the same timeframe as the transect spotlight counts.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"13 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135590013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid development of smart grids, the deployment number of transmission lines has significantly increased, posing significant challenges to the detection and maintenance of power facilities. Unmanned aerial vehicles (UAVs) have become a common means of power inspection. In the context of drone power inspection, drone clusters are used as relays for long-distance communication to expand the communication range and achieve data transmission between patrol drones and base stations. Most of the communication occurs in the air-to-air channel between UAVs, which requires high reliability of communication between drone relays. Therefore, the main focus of this paper is on decoding schemes for drone air-to-air channels. Given the limited computing resources and battery capacity of a drone, as well as the large amount of power data that needs to be transmitted between drone relays, this paper aims to design a high-accuracy and low-complexity decoder for LDPC long-code decoding. We propose a novel shared-parameter neural-network-normalized minimum sum decoding algorithm based on codebook quantization, applying deep learning to traditional LDPC decoding methods. In order to achieve high decoding performance while reducing complexity, this scheme utilizes codebook-based weight quantization and parameter sharing methods to improve the neural-network-normalized minimum sum (NNMS) decoding algorithm. Simulation experimental results show that the proposed method has a better BER performance and low computational complexity. Therefore, the LDPC decoding algorithm designed effectively meets the drone characteristics and the high channel decoding performance requirements. This ensures efficient and reliable data transmission on the data link between drone relays.
{"title":"Research on Data Link Channel Decoding Optimization Scheme for Drone Power Inspection Scenarios","authors":"Haizhi Yu, Kaisa Zhang, Xu Zhao, Yubing Zhang, Bingfeng Cui, Shujuan Sun, Gengshuo Liu, Bo Yu, Chao Ma, Ying Liu, Weidong Gao","doi":"10.3390/drones7110662","DOIUrl":"https://doi.org/10.3390/drones7110662","url":null,"abstract":"With the rapid development of smart grids, the deployment number of transmission lines has significantly increased, posing significant challenges to the detection and maintenance of power facilities. Unmanned aerial vehicles (UAVs) have become a common means of power inspection. In the context of drone power inspection, drone clusters are used as relays for long-distance communication to expand the communication range and achieve data transmission between patrol drones and base stations. Most of the communication occurs in the air-to-air channel between UAVs, which requires high reliability of communication between drone relays. Therefore, the main focus of this paper is on decoding schemes for drone air-to-air channels. Given the limited computing resources and battery capacity of a drone, as well as the large amount of power data that needs to be transmitted between drone relays, this paper aims to design a high-accuracy and low-complexity decoder for LDPC long-code decoding. We propose a novel shared-parameter neural-network-normalized minimum sum decoding algorithm based on codebook quantization, applying deep learning to traditional LDPC decoding methods. In order to achieve high decoding performance while reducing complexity, this scheme utilizes codebook-based weight quantization and parameter sharing methods to improve the neural-network-normalized minimum sum (NNMS) decoding algorithm. Simulation experimental results show that the proposed method has a better BER performance and low computational complexity. Therefore, the LDPC decoding algorithm designed effectively meets the drone characteristics and the high channel decoding performance requirements. This ensures efficient and reliable data transmission on the data link between drone relays.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"11 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135590015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aline Mara Oliveira, Aniel Silva Morais, Gabriela Vieira Lima, Rafael Monteiro Jorge Alves Souza, Luis Cláudio Oliveira-Lopes
The dispersion of chemical gases poses a threat to human health, animals, and the environment. Leaks or accidents during the handling of samples and laboratory materials can result in the uncontrolled release of hazardous or explosive substances. Therefore, it is crucial to monitor gas concentrations in environments where these substances are manipulated. Gas sensor technology has evolved rapidly in recent years, offering increasingly precise and reliable solutions. However, there are still challenges to be overcome, especially when sensors are deployed on unmanned aerial vehicles (UAVs). This article discusses the use of UAVs to locate gas sources and presents real test results using the SGP40 metal oxide semiconductor gas sensor onboard the Crazyflie 2.1 nano quadcopter. The solution proposed in this article uses an odor source identification strategy, employing a gas distribution mapping approach in a three-dimensional environment. The aim of the study was to investigate the feasibility and effectiveness of this approach for detecting gases in areas that are difficult to access or dangerous for humans. The results obtained show that the use of drones equipped with gas sensors is a promising alternative for the detection and monitoring of gas leaks in closed environments.
{"title":"Detection of Volatile Organic Compounds (VOCs) in Indoor Environments Using Nano Quadcopter","authors":"Aline Mara Oliveira, Aniel Silva Morais, Gabriela Vieira Lima, Rafael Monteiro Jorge Alves Souza, Luis Cláudio Oliveira-Lopes","doi":"10.3390/drones7110660","DOIUrl":"https://doi.org/10.3390/drones7110660","url":null,"abstract":"The dispersion of chemical gases poses a threat to human health, animals, and the environment. Leaks or accidents during the handling of samples and laboratory materials can result in the uncontrolled release of hazardous or explosive substances. Therefore, it is crucial to monitor gas concentrations in environments where these substances are manipulated. Gas sensor technology has evolved rapidly in recent years, offering increasingly precise and reliable solutions. However, there are still challenges to be overcome, especially when sensors are deployed on unmanned aerial vehicles (UAVs). This article discusses the use of UAVs to locate gas sources and presents real test results using the SGP40 metal oxide semiconductor gas sensor onboard the Crazyflie 2.1 nano quadcopter. The solution proposed in this article uses an odor source identification strategy, employing a gas distribution mapping approach in a three-dimensional environment. The aim of the study was to investigate the feasibility and effectiveness of this approach for detecting gases in areas that are difficult to access or dangerous for humans. The results obtained show that the use of drones equipped with gas sensors is a promising alternative for the detection and monitoring of gas leaks in closed environments.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"222 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}