The problem of constructing a control system for underwater vehicles is relevant due to the growing scope of their application, including acting in autonomous modes. Moreover, it is required to have an ability to use these devices both in quasi-stationary and close to pulsed mode. Thus, it is necessary to develop a mathematical model of vehicle’s dynamics for autonomous operations of an unmanned underwater vehicle (UUV), which would describe the dynamics of motion as close as possible to the real one. The current paper is denoted to the identification problem of UUV model. A comparative analysis of UUV dynamics models was carries out, among which a model that uses added masses of liquid to describe hydrodynamic forces was selected. For UUV of a symmetrical streamlined shape with a small displacement and performing plane movements, it is assumed that the influence of the attached fluid manifests itself in the form of an increase in mass and moments of inertia. A control system designed to stabilize the device was built on the model, after which it was adjusted on the existing sample of the UUV. The considered theoretical and experimental methods for identifying the dynamic model of the UUV turned out to be competitive with each other and gave comparable results for calculating the added masses. The carried out full-scale experiments confirms that the proposed method for estimating the added masses is quite effective for constructing a control system designed to operate in a given motion mode.
{"title":"On One Problem of Identifying a Model of an Uninhabited Underwater Vehicle","authors":"A. P. Potapov, I. A. Galyaev, A. A. Galyaev","doi":"10.17587/mau.25.132-141","DOIUrl":"https://doi.org/10.17587/mau.25.132-141","url":null,"abstract":"The problem of constructing a control system for underwater vehicles is relevant due to the growing scope of their application, including acting in autonomous modes. Moreover, it is required to have an ability to use these devices both in quasi-stationary and close to pulsed mode. Thus, it is necessary to develop a mathematical model of vehicle’s dynamics for autonomous operations of an unmanned underwater vehicle (UUV), which would describe the dynamics of motion as close as possible to the real one. The current paper is denoted to the identification problem of UUV model. A comparative analysis of UUV dynamics models was carries out, among which a model that uses added masses of liquid to describe hydrodynamic forces was selected. For UUV of a symmetrical streamlined shape with a small displacement and performing plane movements, it is assumed that the influence of the attached fluid manifests itself in the form of an increase in mass and moments of inertia. A control system designed to stabilize the device was built on the model, after which it was adjusted on the existing sample of the UUV. The considered theoretical and experimental methods for identifying the dynamic model of the UUV turned out to be competitive with each other and gave comparable results for calculating the added masses. The carried out full-scale experiments confirms that the proposed method for estimating the added masses is quite effective for constructing a control system designed to operate in a given motion mode.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"118 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140079465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The advanced statement of the optimal control problem is presented. The difference between the extended setting of the problem and the classical one is that the model of the control object consists of two subsystems, a reference model, which generates an optimal motion path and a dynamic model of the control object with a system for stabilizing movement along the optimal trajectory. In the problem, it is necessary to find a program control function whose argument is time and a stabilization system function whose argument is the deviation of the state vector of the control object from the optimal program trajectory. The task has many initial conditions, one of which is used in the search for software control, and the rest for the search for a stabilization system. The control quality criterion is defined as the sum of the original quality criterion for all specified initial conditions. The procedure for trans forming the classical setting of the optimal control problem to an extended setting based on the refinement of the problem for its practical implementation is presented. To solve the extended optimal control problem, a universal numerical method is proposed based on a piecemeal linear approximation of the control function using evolutionary algorithms and symbol regression methods for structurally parametric optimization of the stabilization system function. An example of solving an extended optimal control problem for spatial motion by a quadcopter, which should conduct reconnaissance of a given territory in a minimum time, is given.
{"title":"Advanced Optimal Control Problem and Numerical Method for its Solving","authors":"A. Diveev","doi":"10.17587/mau.25.111-120","DOIUrl":"https://doi.org/10.17587/mau.25.111-120","url":null,"abstract":"The advanced statement of the optimal control problem is presented. The difference between the extended setting of the problem and the classical one is that the model of the control object consists of two subsystems, a reference model, which generates an optimal motion path and a dynamic model of the control object with a system for stabilizing movement along the optimal trajectory. In the problem, it is necessary to find a program control function whose argument is time and a stabilization system function whose argument is the deviation of the state vector of the control object from the optimal program trajectory. The task has many initial conditions, one of which is used in the search for software control, and the rest for the search for a stabilization system. The control quality criterion is defined as the sum of the original quality criterion for all specified initial conditions. The procedure for trans forming the classical setting of the optimal control problem to an extended setting based on the refinement of the problem for its practical implementation is presented. To solve the extended optimal control problem, a universal numerical method is proposed based on a piecemeal linear approximation of the control function using evolutionary algorithms and symbol regression methods for structurally parametric optimization of the stabilization system function. An example of solving an extended optimal control problem for spatial motion by a quadcopter, which should conduct reconnaissance of a given territory in a minimum time, is given.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"15 S2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140264987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. I. Gdansky, E. I. Bazhenov, S. A. Mokrushin, E. A. Nazoykin, S. I. Okhapkin
The article considers the problem of determining the orientation of mobile transport robots, which are now actively used in almost all areas of industry. They make it possible to intensify production, free personnel from performing routine operations, and exclude the influence of the human factor from work. Based on the analysis of various variants of active orientation methods involving the use of binocular video systems installed on the vehicles themselves, it is proposed to use a passive orientation detection system. It includes a single stationary monocular video system, the replacement of onboard video systems on mobile robots with simple radiation sensors, as well as the use of anchor points in the area of their movement. The order of choice of anchor points in solving the problem of orientation of a mobile transport robot using a monocular video system, in particular for a rectangular interior space, is considered. Calculation formulas for determining the coordinates of the sensor from the pixel coordinates of its image obtained from a monocular video camera are determined. The general sequence of actions for determining the orientation of a mobile robotic platform is also considered. Unlike active systems, this method makes it possible to significantly simplify the hardware, significantly facilitate the analysis of the current position of the mobile robot and thereby reduce the computational complexity of calculations due to the fact that there is no need to use a complex mathematical apparatus. It is being replaced by simpler two-dimensional geometric calculations. This approach, due to the unified management, makes it possible to effectively coordinate the actions of a group of mobile transport robots when they are used together, greatly simplifies the solution of a number of tasks for optimizing the intra-shop movement of mobile vehicles.
{"title":"Passive Visual Odometry of Mobile Transport Robots in Production Areas Using Anchor Points","authors":"N. I. Gdansky, E. I. Bazhenov, S. A. Mokrushin, E. A. Nazoykin, S. I. Okhapkin","doi":"10.17587/mau.25.151-157","DOIUrl":"https://doi.org/10.17587/mau.25.151-157","url":null,"abstract":"The article considers the problem of determining the orientation of mobile transport robots, which are now actively used in almost all areas of industry. They make it possible to intensify production, free personnel from performing routine operations, and exclude the influence of the human factor from work. Based on the analysis of various variants of active orientation methods involving the use of binocular video systems installed on the vehicles themselves, it is proposed to use a passive orientation detection system. It includes a single stationary monocular video system, the replacement of onboard video systems on mobile robots with simple radiation sensors, as well as the use of anchor points in the area of their movement. The order of choice of anchor points in solving the problem of orientation of a mobile transport robot using a monocular video system, in particular for a rectangular interior space, is considered. Calculation formulas for determining the coordinates of the sensor from the pixel coordinates of its image obtained from a monocular video camera are determined. The general sequence of actions for determining the orientation of a mobile robotic platform is also considered. Unlike active systems, this method makes it possible to significantly simplify the hardware, significantly facilitate the analysis of the current position of the mobile robot and thereby reduce the computational complexity of calculations due to the fact that there is no need to use a complex mathematical apparatus. It is being replaced by simpler two-dimensional geometric calculations. This approach, due to the unified management, makes it possible to effectively coordinate the actions of a group of mobile transport robots when they are used together, greatly simplifies the solution of a number of tasks for optimizing the intra-shop movement of mobile vehicles.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"37 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140263340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper discusses a pulse voltage converter with a high switching frequency of a switch with an analog control system capable of providing the required conversion frequencies. The pulsed voltage converter under study has a control system with a proportional-integral regulator, implemented on the basis of a general-purpose operational amplifier. Operational amplifiers with such parameters are widely used as part of modern control microcircuits for pulse-width converters. In this work, the influence of the technological spread of the gain of the operational amplifier on the dynamics of the converter is studied. The studies were carried out both using the developed nonlinear dynamic model of the system, and using a small-signal open-loop dynamic model. A technique has been developed for selecting the parameters of the controller, taking into account the technological spread of the gain of the operational amplifier based on a nonlinear dynamic model. An analysis of the results obtained using a nonlinear dynamic model showed a significant influence of the specified spread on the dynamics of the system, even when the cutoff frequency of the open-loop control system is significantly removed from the frequency of the high-frequency pole of the operational amplifier. This must be taken into account when designing pulse voltage converters with analog control systems, namely, when choosing the parameters of regulators. It is shown that with the optimal values of the controller, selected according to the proposed method, the effect of technological gain spread on the frequency characteristics of an open circuit in the low-mid frequency regions is minimal, which indicates the effectiveness of the method.
{"title":"Switching Converters Dynamics Considering Non-Ideality of the Error Amplifier within the Analogue Control System","authors":"A. Andriyanov, A. Malakhanov, Yu. A. Sitnikov","doi":"10.17587/mau.25.121-131","DOIUrl":"https://doi.org/10.17587/mau.25.121-131","url":null,"abstract":"The paper discusses a pulse voltage converter with a high switching frequency of a switch with an analog control system capable of providing the required conversion frequencies. The pulsed voltage converter under study has a control system with a proportional-integral regulator, implemented on the basis of a general-purpose operational amplifier. Operational amplifiers with such parameters are widely used as part of modern control microcircuits for pulse-width converters. In this work, the influence of the technological spread of the gain of the operational amplifier on the dynamics of the converter is studied. The studies were carried out both using the developed nonlinear dynamic model of the system, and using a small-signal open-loop dynamic model. A technique has been developed for selecting the parameters of the controller, taking into account the technological spread of the gain of the operational amplifier based on a nonlinear dynamic model. An analysis of the results obtained using a nonlinear dynamic model showed a significant influence of the specified spread on the dynamics of the system, even when the cutoff frequency of the open-loop control system is significantly removed from the frequency of the high-frequency pole of the operational amplifier. This must be taken into account when designing pulse voltage converters with analog control systems, namely, when choosing the parameters of regulators. It is shown that with the optimal values of the controller, selected according to the proposed method, the effect of technological gain spread on the frequency characteristics of an open circuit in the low-mid frequency regions is minimal, which indicates the effectiveness of the method.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"10 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140263419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The regular walking (up or down) on a ladder (or an inclined plane) of a human operator with an exoskeleton of the lower extremities, carrying an additional load, is considered. It is assumed that the exoskeleton is equipped with high— torque electric motors without gearboxes — in the knee and, perhaps, in other joints. The modes of flat, single-support quasi-comfortable walking are considered, in the implementation of which both electric motors and a human operator with experience working with this mechanism participate. The nominal pattern of movement associated, in particular, with the circumvention of obstacles (steps) with a portable foot and placing it in the support position at the next step is set and supported by a person. The task of the algorithm controlling electric motors is to partially reduce the load that falls on the operator. From the point of view of minimizing human energy consumption, the supporting leg and especially its knee joint are the most important. In the knee joint of the supporting leg, an algorithm for controlling the corresponding electric motor is proposed, based on measuring the vertical reaction force of the support in combination, perhaps, with the angle in the knee and angular velocity. Feedback is constructed, the "successful" values of the coefficients of which can be predicted using a kind of least squares method along the nominal mode. The task of this feedback is actually the distribution of the load that falls to the share of the operator and the system of electric motors. It is shown by using numerical research methods to what benefits in terms of energy consumption in one regular step this can, in principle, lead. This principle of feedback construction extends further to the hip and ankle moments of the supporting leg. It is assumed that the portable leg is controlled everywhere only by the human operator’s own efforts, the absence of gearboxes allows this to be done without much friction loss, which in turn affects the smallness of energy costs and for the operator.
{"title":"About the Use of Gearless Electric Motors in the Construction of an Exoskeleton Walking on an Uneven Surface","authors":"V. V. Budanov, E. Lavrovsky","doi":"10.17587/mau.25.142-150","DOIUrl":"https://doi.org/10.17587/mau.25.142-150","url":null,"abstract":"The regular walking (up or down) on a ladder (or an inclined plane) of a human operator with an exoskeleton of the lower extremities, carrying an additional load, is considered. It is assumed that the exoskeleton is equipped with high— torque electric motors without gearboxes — in the knee and, perhaps, in other joints. The modes of flat, single-support quasi-comfortable walking are considered, in the implementation of which both electric motors and a human operator with experience working with this mechanism participate. The nominal pattern of movement associated, in particular, with the circumvention of obstacles (steps) with a portable foot and placing it in the support position at the next step is set and supported by a person. The task of the algorithm controlling electric motors is to partially reduce the load that falls on the operator. From the point of view of minimizing human energy consumption, the supporting leg and especially its knee joint are the most important. In the knee joint of the supporting leg, an algorithm for controlling the corresponding electric motor is proposed, based on measuring the vertical reaction force of the support in combination, perhaps, with the angle in the knee and angular velocity. Feedback is constructed, the \"successful\" values of the coefficients of which can be predicted using a kind of least squares method along the nominal mode. The task of this feedback is actually the distribution of the load that falls to the share of the operator and the system of electric motors. It is shown by using numerical research methods to what benefits in terms of energy consumption in one regular step this can, in principle, lead. This principle of feedback construction extends further to the hip and ankle moments of the supporting leg. It is assumed that the portable leg is controlled everywhere only by the human operator’s own efforts, the absence of gearboxes allows this to be done without much friction loss, which in turn affects the smallness of energy costs and for the operator.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"59 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140264711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The dynamics and control of the KUKA youBot robot, which consists of a mecanum-platform and a five-axis manipulator fixed on it, is considered. A mathematical model of the dynamics of a mobile robot-manipulator has been developed taking into account the design of the mecanum-wheels, multicomponent contact friction, dynamics of robot drives and the mutual influence of the platform and the manipulator. A robot motion control law is proposed that ensures precise movement of the robot to the required position. According to the results of numerical simulation, the operability of the proposed control is confirmed. At the same time, at the end of the transient process, there are high frequency oscillations in the coordinate of the platform geometric platform, the platform heading angle and the angles of the manipulator links. To reduce amplitude of these high frequency oscillations, it is necessary more accurately compensate for the action of gravitational forces. It is shown that due to the mutual influence of the dynamics of the manipulator on the platform, platform displacements occur relative to the initial position. Based on the simulation results, the influence of the design of the mecanum-wheels, multicomponent contact friction and dynamics robot drives, as well as the mutual influence of the platform and the manipulator on the dynamics of the KUKA youBot robot, is shown. Further research involves a more detailed analysis and synthesis of control algorithms within the framework of theories of optimal or adaptive control.
{"title":"Study of the Influence of the Mecanum-Wheel Design and Contact Forces on the Control Accuracy of Mobile Robot-Manipulator KUKA YouBot","authors":"G. R. Saypulaev, B. Adamov","doi":"10.17587/mau.25.158-164","DOIUrl":"https://doi.org/10.17587/mau.25.158-164","url":null,"abstract":"The dynamics and control of the KUKA youBot robot, which consists of a mecanum-platform and a five-axis manipulator fixed on it, is considered. A mathematical model of the dynamics of a mobile robot-manipulator has been developed taking into account the design of the mecanum-wheels, multicomponent contact friction, dynamics of robot drives and the mutual influence of the platform and the manipulator. A robot motion control law is proposed that ensures precise movement of the robot to the required position. According to the results of numerical simulation, the operability of the proposed control is confirmed. At the same time, at the end of the transient process, there are high frequency oscillations in the coordinate of the platform geometric platform, the platform heading angle and the angles of the manipulator links. To reduce amplitude of these high frequency oscillations, it is necessary more accurately compensate for the action of gravitational forces. It is shown that due to the mutual influence of the dynamics of the manipulator on the platform, platform displacements occur relative to the initial position. Based on the simulation results, the influence of the design of the mecanum-wheels, multicomponent contact friction and dynamics robot drives, as well as the mutual influence of the platform and the manipulator on the dynamics of the KUKA youBot robot, is shown. Further research involves a more detailed analysis and synthesis of control algorithms within the framework of theories of optimal or adaptive control.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"119 43","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140079115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The complexity of objects and control systems increases the requirements for mathematical models. The structural identifiability (SI) assessment of nonlinear systems is one of the identification problems. Until now, this problem solves by parametric methods using various approximation methods. This approach is not always effective under uncertainty. We apply an approach to SI estimation based on the analysis of virtual framework. There is an objects class whose properties describe by nonsymmetric nonlinearities. The paper generalizes and develops the virtual framework (VF) method for systems with asymmetric non-linearities. Requirements for the system input are formed based on the excitation constancy property and S-synchronizability. Considering S-synchronizability gives VF that most fully reflect nonlinear properties of the system. A method for designing virtual structures based on the measurement information analysis describes. Structural identifiability fundamentals described for systems with symmetric nonlinearities. Splitting of the initial nonlinear system obtains for the VF application. Two methods consider for evaluating SI systems with nonsymmetric nonlinearities (NN) and propose their development on systems with nonsymmetric nonlinearities. Virtual framework almost homotheticity conditions obtain for SI estimation. A NN class with parametric features considers and conditions for estimating their almost homotheticity obtain. Conditions of almost homothety and h-identifiability obtain for systems with NN. The detectability and recoverability proofed for virtual frameworks guaranteed the SI estimation under uncertainty. The conditions under which the nonsymmetric nonlinearity is hypothetical symmetric nonlinearity obtained. The described approach to the SI assessment is general. If the SI of specific nonlinear systems analyzes, then features these systems consider. These features require modification of proposed algorithms and procedures. SI evaluation examples of closed nonlinear systems given under uncertainty and of the excitation constancy fulfillment.
物体和控制系统的复杂性增加了对数学模型的要求。非线性系统的结构可识别性(SI)评估是识别问题之一。迄今为止,这一问题都是通过参数方法和各种近似方法来解决的。在不确定的情况下,这种方法并不总是有效的。我们采用了一种基于虚拟框架分析的 SI 估算方法。有一类对象,其属性由非对称非线性描述。本文针对非对称非线性系统推广并发展了虚拟框架(VF)方法。对系统输入的要求是基于激励恒定性和 S 同步性形成的。考虑到 S 同步性,虚拟框架能最充分地反映系统的非线性特性。描述了一种基于测量信息分析的虚拟结构设计方法。描述了对称非线性系统的结构可识别性基本原理。初始非线性系统的拆分可用于虚拟结构的应用。考虑用两种方法评估非对称非线性(NN)的 SI 系统,并建议在非对称非线性系统上发展这两种方法。虚拟框架为 SI 估算提供了几乎同调的条件。考虑了具有参数特征的 NN 类,并获得了估计其几乎同调性的条件。获得了带有 NN 的系统的几乎同源性和 h-identifiability 条件。虚拟框架的可探测性和可恢复性证明了不确定性下的 SI 估计。获得了非对称非线性为假设对称非线性的条件。所描述的 SI 评估方法是通用的。如果分析特定非线性系统的 SI,则需要考虑这些系统的特征。这些特征要求对建议的算法和程序进行修改。在不确定性和满足激励恒定性的情况下,给出了封闭非线性系统的 SI 评估示例。
{"title":"Structural Identifiability Evaluation of System with Nonsymmetric Nonlinearities","authors":"N. Karabutov","doi":"10.17587/mau.25.55-64","DOIUrl":"https://doi.org/10.17587/mau.25.55-64","url":null,"abstract":"The complexity of objects and control systems increases the requirements for mathematical models. The structural identifiability (SI) assessment of nonlinear systems is one of the identification problems. Until now, this problem solves by parametric methods using various approximation methods. This approach is not always effective under uncertainty. We apply an approach to SI estimation based on the analysis of virtual framework. There is an objects class whose properties describe by nonsymmetric nonlinearities. The paper generalizes and develops the virtual framework (VF) method for systems with asymmetric non-linearities. Requirements for the system input are formed based on the excitation constancy property and S-synchronizability. Considering S-synchronizability gives VF that most fully reflect nonlinear properties of the system. A method for designing virtual structures based on the measurement information analysis describes. Structural identifiability fundamentals described for systems with symmetric nonlinearities. Splitting of the initial nonlinear system obtains for the VF application. Two methods consider for evaluating SI systems with nonsymmetric nonlinearities (NN) and propose their development on systems with nonsymmetric nonlinearities. Virtual framework almost homotheticity conditions obtain for SI estimation. A NN class with parametric features considers and conditions for estimating their almost homotheticity obtain. Conditions of almost homothety and h-identifiability obtain for systems with NN. The detectability and recoverability proofed for virtual frameworks guaranteed the SI estimation under uncertainty. The conditions under which the nonsymmetric nonlinearity is hypothetical symmetric nonlinearity obtained. The described approach to the SI assessment is general. If the SI of specific nonlinear systems analyzes, then features these systems consider. These features require modification of proposed algorithms and procedures. SI evaluation examples of closed nonlinear systems given under uncertainty and of the excitation constancy fulfillment.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"380 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139807847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. I. Borzenko, D. Zhdanov, R. E. Makarov, A. I. Seleznev, V. Utukin, A. Bureev
The article presents the results of the development of a prototype of a functional layout of a soft exoskeleton of the hand, which is part of a robotic complex for restoring the function of the upper limb of patients after a stroke. The use of the layout will allow for therapy based on a mixed approach, which implements both assistance in carrying out independent movements of the patient’s hand, and their full implementation using data on its movement recorded during rehabilitation procedures. The authors of the manuscript present a comparative and quantitative analysis of two options for laying a cable system that drives the patient’s hand and fingers. To determine the best option for laying cables, a parametric study of the amount of work performed and the bending time of one finger was carried out, depending on the options for laying with and without taking into account the load. In the first variant, the cables were laid with small stitches of the order of one centimeter along the lower surface of the finger. In the second variant, the cable passed through the glove in places of natural attachment of tendons to bones. Testing was carried out on the index finger of a relaxed healthy person. At the initial moment of time, the hand occupied a position along the body, the fingers were completely unclenched, while a load was fixed on the distal phalanx. The flexion time of the finger was determined by a touch sensor attached to the palm of the hand. The results of experimental studies showed that cables with a minimum number of attachment points to the base of the exoskeleton in places of natural attachment of tendons to the bone give maximum effort and ensure the achievement of the largest range of possible positions of the phalanges of the fingers. The results of studies of the developed efforts on the part of the device on the fingers of a healthy person are also presented, which allow us to conclude that it can be used for rehabilitation purposes.
{"title":"Mechatronic Hand Exoskeleton for Rehabilitation after Stroke","authors":"E. I. Borzenko, D. Zhdanov, R. E. Makarov, A. I. Seleznev, V. Utukin, A. Bureev","doi":"10.17587/mau.25.101-107","DOIUrl":"https://doi.org/10.17587/mau.25.101-107","url":null,"abstract":"The article presents the results of the development of a prototype of a functional layout of a soft exoskeleton of the hand, which is part of a robotic complex for restoring the function of the upper limb of patients after a stroke. The use of the layout will allow for therapy based on a mixed approach, which implements both assistance in carrying out independent movements of the patient’s hand, and their full implementation using data on its movement recorded during rehabilitation procedures. The authors of the manuscript present a comparative and quantitative analysis of two options for laying a cable system that drives the patient’s hand and fingers. To determine the best option for laying cables, a parametric study of the amount of work performed and the bending time of one finger was carried out, depending on the options for laying with and without taking into account the load. In the first variant, the cables were laid with small stitches of the order of one centimeter along the lower surface of the finger. In the second variant, the cable passed through the glove in places of natural attachment of tendons to bones. Testing was carried out on the index finger of a relaxed healthy person. At the initial moment of time, the hand occupied a position along the body, the fingers were completely unclenched, while a load was fixed on the distal phalanx. The flexion time of the finger was determined by a touch sensor attached to the palm of the hand. The results of experimental studies showed that cables with a minimum number of attachment points to the base of the exoskeleton in places of natural attachment of tendons to the bone give maximum effort and ensure the achievement of the largest range of possible positions of the phalanges of the fingers. The results of studies of the developed efforts on the part of the device on the fingers of a healthy person are also presented, which allow us to conclude that it can be used for rehabilitation purposes.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"20 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The complexity of objects and control systems increases the requirements for mathematical models. The structural identifiability (SI) assessment of nonlinear systems is one of the identification problems. Until now, this problem solves by parametric methods using various approximation methods. This approach is not always effective under uncertainty. We apply an approach to SI estimation based on the analysis of virtual framework. There is an objects class whose properties describe by nonsymmetric nonlinearities. The paper generalizes and develops the virtual framework (VF) method for systems with asymmetric non-linearities. Requirements for the system input are formed based on the excitation constancy property and S-synchronizability. Considering S-synchronizability gives VF that most fully reflect nonlinear properties of the system. A method for designing virtual structures based on the measurement information analysis describes. Structural identifiability fundamentals described for systems with symmetric nonlinearities. Splitting of the initial nonlinear system obtains for the VF application. Two methods consider for evaluating SI systems with nonsymmetric nonlinearities (NN) and propose their development on systems with nonsymmetric nonlinearities. Virtual framework almost homotheticity conditions obtain for SI estimation. A NN class with parametric features considers and conditions for estimating their almost homotheticity obtain. Conditions of almost homothety and h-identifiability obtain for systems with NN. The detectability and recoverability proofed for virtual frameworks guaranteed the SI estimation under uncertainty. The conditions under which the nonsymmetric nonlinearity is hypothetical symmetric nonlinearity obtained. The described approach to the SI assessment is general. If the SI of specific nonlinear systems analyzes, then features these systems consider. These features require modification of proposed algorithms and procedures. SI evaluation examples of closed nonlinear systems given under uncertainty and of the excitation constancy fulfillment.
物体和控制系统的复杂性增加了对数学模型的要求。非线性系统的结构可识别性(SI)评估是识别问题之一。迄今为止,这一问题都是通过参数方法和各种近似方法来解决的。在不确定的情况下,这种方法并不总是有效的。我们采用了一种基于虚拟框架分析的 SI 估算方法。有一类对象,其属性由非对称非线性描述。本文针对非对称非线性系统推广并发展了虚拟框架(VF)方法。对系统输入的要求是基于激励恒定性和 S 同步性形成的。考虑到 S 同步性,虚拟框架能最充分地反映系统的非线性特性。描述了一种基于测量信息分析的虚拟结构设计方法。描述了对称非线性系统的结构可识别性基本原理。初始非线性系统的拆分可用于虚拟结构的应用。考虑用两种方法评估非对称非线性(NN)的 SI 系统,并建议在非对称非线性系统上发展这两种方法。虚拟框架为 SI 估算提供了几乎同调的条件。考虑了具有参数特征的 NN 类,并获得了估计其几乎同调性的条件。获得了带有 NN 的系统的几乎同源性和 h-identifiability 条件。虚拟框架的可探测性和可恢复性证明了不确定性下的 SI 估计。获得了非对称非线性为假设对称非线性的条件。所描述的 SI 评估方法是通用的。如果分析特定非线性系统的 SI,则需要考虑这些系统的特征。这些特征要求对建议的算法和程序进行修改。在不确定性和满足激励恒定性的情况下,给出了封闭非线性系统的 SI 评估示例。
{"title":"Structural Identifiability Evaluation of System with Nonsymmetric Nonlinearities","authors":"N. Karabutov","doi":"10.17587/mau.25.55-64","DOIUrl":"https://doi.org/10.17587/mau.25.55-64","url":null,"abstract":"The complexity of objects and control systems increases the requirements for mathematical models. The structural identifiability (SI) assessment of nonlinear systems is one of the identification problems. Until now, this problem solves by parametric methods using various approximation methods. This approach is not always effective under uncertainty. We apply an approach to SI estimation based on the analysis of virtual framework. There is an objects class whose properties describe by nonsymmetric nonlinearities. The paper generalizes and develops the virtual framework (VF) method for systems with asymmetric non-linearities. Requirements for the system input are formed based on the excitation constancy property and S-synchronizability. Considering S-synchronizability gives VF that most fully reflect nonlinear properties of the system. A method for designing virtual structures based on the measurement information analysis describes. Structural identifiability fundamentals described for systems with symmetric nonlinearities. Splitting of the initial nonlinear system obtains for the VF application. Two methods consider for evaluating SI systems with nonsymmetric nonlinearities (NN) and propose their development on systems with nonsymmetric nonlinearities. Virtual framework almost homotheticity conditions obtain for SI estimation. A NN class with parametric features considers and conditions for estimating their almost homotheticity obtain. Conditions of almost homothety and h-identifiability obtain for systems with NN. The detectability and recoverability proofed for virtual frameworks guaranteed the SI estimation under uncertainty. The conditions under which the nonsymmetric nonlinearity is hypothetical symmetric nonlinearity obtained. The described approach to the SI assessment is general. If the SI of specific nonlinear systems analyzes, then features these systems consider. These features require modification of proposed algorithms and procedures. SI evaluation examples of closed nonlinear systems given under uncertainty and of the excitation constancy fulfillment.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"50 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The work proposes an algorithm for controlling a wheeled robot in an environment with static and dynamic obstacles. A wheeled robot (WR) consists of a platform, two wheels with a differential drive and one roller, which is used solely for the stability of the structure and does not affect the dynamics of the system. The robot’s motion algorithm assumes its movement from the starting point to the final point in an environment with obstacles. The robot’s motion program is specified through servo-constraints, and the algorithm that implements the motion program is based on the potential field method. In the case of a dynamic obstacle, a repulsive field of a shape elongated in the direction of movement of the obstacle is constructed, allowing the robot to safely go around it. It is possible to change the geometric dimensions of the field using the entered numerical parameters. An algorithm for overcoming a potential hole by a robot is presented, according to which the robot is taken out of the potential hole and directed to a global goal by an introduced fictitious point located outside the critical region (local minimum region) and having its own attractive field. The paper presents the results of numerical simulation of the robot’s movement both in an environment with static and dynamic obstacles, as well as the results of a numerical experiment with overcoming the region of a potential well. Graphs of the required mechanical parameters are presented. The results of numerical simulation confirm the effectiveness of the proposed algorithms.
{"title":"Control of a Wheeled Robot on a Plane with Obstacles","authors":"E. A. Mikishanina, P. S. Platonov","doi":"10.17587/mau.25.93-100","DOIUrl":"https://doi.org/10.17587/mau.25.93-100","url":null,"abstract":"The work proposes an algorithm for controlling a wheeled robot in an environment with static and dynamic obstacles. A wheeled robot (WR) consists of a platform, two wheels with a differential drive and one roller, which is used solely for the stability of the structure and does not affect the dynamics of the system. The robot’s motion algorithm assumes its movement from the starting point to the final point in an environment with obstacles. The robot’s motion program is specified through servo-constraints, and the algorithm that implements the motion program is based on the potential field method. In the case of a dynamic obstacle, a repulsive field of a shape elongated in the direction of movement of the obstacle is constructed, allowing the robot to safely go around it. It is possible to change the geometric dimensions of the field using the entered numerical parameters. An algorithm for overcoming a potential hole by a robot is presented, according to which the robot is taken out of the potential hole and directed to a global goal by an introduced fictitious point located outside the critical region (local minimum region) and having its own attractive field. The paper presents the results of numerical simulation of the robot’s movement both in an environment with static and dynamic obstacles, as well as the results of a numerical experiment with overcoming the region of a potential well. Graphs of the required mechanical parameters are presented. The results of numerical simulation confirm the effectiveness of the proposed algorithms.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"56 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139868240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}