The paper proposes a hybrid model for predictive control under step disturbances that lead to a sharp jump in the state of the process. Similar changes occur when controlling the temperature of the steel strip on continuous hot-dip galvanizing units. Periodic changes in strip gauge or strip speed result in abrupt changes in the temperature of the steel at the outlet of the annealing furnace. During such periods deviation control is difficult requiring introduction of tolerances that limit productivity and leading to excessive heating of the metal. The paper shows that the existing proposals for controlling the temperature of the steel strip are not effective enough with a sharp change in the state of the process. The reasons for this are unknown disturbances operating in a wide frequency range and having low-frequency and trend components, as well as many influencing factors. It is shown that the problems of representativeness of the initial accumulated data make it difficult to create complex empirical models, and the level of uncertainty of the processes in the furnace makes it difficult to create complex interpretable models. The proposed hybrid model involves combining two types of simplified interpretable process models, as well as an empirical model based on an artificial neural network. The errors of the interpreted models are shown to be effectively predicted by a neural network in the presence of an additional signal from an observer of unknown disturbances. Computational experiments carried out on the data of one of the units of MMK PJSC in Russia showed that the hybrid model provides high accuracy of steel strip temperature prediction during technological disturbances and does not require frequent reconfiguration.
{"title":"Hybrid Model for Metal Temperature Control during Hot Dip Galvanizing of Steel Strip","authors":"M. Ryabchikov, E. Ryabchikova, V. S. Novak","doi":"10.17587/mau.24.421-432","DOIUrl":"https://doi.org/10.17587/mau.24.421-432","url":null,"abstract":"The paper proposes a hybrid model for predictive control under step disturbances that lead to a sharp jump in the state of the process. Similar changes occur when controlling the temperature of the steel strip on continuous hot-dip galvanizing units. Periodic changes in strip gauge or strip speed result in abrupt changes in the temperature of the steel at the outlet of the annealing furnace. During such periods deviation control is difficult requiring introduction of tolerances that limit productivity and leading to excessive heating of the metal. The paper shows that the existing proposals for controlling the temperature of the steel strip are not effective enough with a sharp change in the state of the process. The reasons for this are unknown disturbances operating in a wide frequency range and having low-frequency and trend components, as well as many influencing factors. It is shown that the problems of representativeness of the initial accumulated data make it difficult to create complex empirical models, and the level of uncertainty of the processes in the furnace makes it difficult to create complex interpretable models. The proposed hybrid model involves combining two types of simplified interpretable process models, as well as an empirical model based on an artificial neural network. The errors of the interpreted models are shown to be effectively predicted by a neural network in the presence of an additional signal from an observer of unknown disturbances. Computational experiments carried out on the data of one of the units of MMK PJSC in Russia showed that the hybrid model provides high accuracy of steel strip temperature prediction during technological disturbances and does not require frequent reconfiguration.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82342196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article is devoted to the development of a method for improving the accuracy of a gyro with a spherical ball bearing suspension operating in the mode of a deflection angle meter of the base on which it is installed. When operating a gyroscope as part of an information-measuring and control system, such an operational characteristic as the accuracy of readings, depending on the noise component of the gyroscope output signal, is of decisive importance. The purpose of the article is to solve the problem of reducing the noise component of the output signal while maintaining a wide bandwidth of the device and a minimum phase delay of the output signal in relation to the measured value. The paper provides an overview of the existing device construction schemes. A mathematical description of the functioning of the gyroscope is presented, on the basis of which the transfer functions for the moment (disturbing, controlling or total) along the direct and cross channels are obtained. Transfer functions are also obtained, which are the ratio of the output signal to the measured value through direct and cross channels. It is noted that the predominant frequencies of the noise component of the output signal correspond to the rotational frequency of the gyroscope rotor, the rotation frequency of the gyroscope rotor and the multiple rotation frequencies of the gyroscope rotor. The structure of the system is proposed in which the signal from the gyroscope angle sensor with a spherical ball bearing suspension is summed up with the output signal of an additional angular velocity sensor according to the corresponding coordinate and then the total signal is smoothed using an aperiodic link of the first order. The results are obtained for determining the parameters of the channel of the angular velocity meter, at which it is possible to compensate for the bandwidth limitations in the channel of the angle measurement due to the time constant of the smoothing filter and at the same time ensure effective suppression of the noise component of the output signal. The proposed construction scheme of the meter provides attenuation of noise components in the output signal of a gyroscope with a spherical ball bearing suspension at a rotation frequency of the gyroscope rotor 250 Hz by 156 times, at a frequency of nutation oscillations of the gyroscope rotor 404 Hz by 256 times, at a frequency of 500 Hz by 316 times, at a frequency of 750 Hz by 474 times, at a frequency of 1000 Hz by 630 times, at a frequency of 1250 Hz by 785 times while maintaining a wide bandwidth of 285 Hz when measuring an angle with a phase lag of the output signal from the measured one close to zero degrees in the bandwidth.
{"title":"Method for Increasing the Accuracy of a Gyroscope with a Spherical Ball Bearing Suspension","authors":"D. M. Malyutin, V. Raspopov, Yu. V. Ivanov","doi":"10.17587/mau.24.440-447","DOIUrl":"https://doi.org/10.17587/mau.24.440-447","url":null,"abstract":"The article is devoted to the development of a method for improving the accuracy of a gyro with a spherical ball bearing suspension operating in the mode of a deflection angle meter of the base on which it is installed. When operating a gyroscope as part of an information-measuring and control system, such an operational characteristic as the accuracy of readings, depending on the noise component of the gyroscope output signal, is of decisive importance. The purpose of the article is to solve the problem of reducing the noise component of the output signal while maintaining a wide bandwidth of the device and a minimum phase delay of the output signal in relation to the measured value. The paper provides an overview of the existing device construction schemes. A mathematical description of the functioning of the gyroscope is presented, on the basis of which the transfer functions for the moment (disturbing, controlling or total) along the direct and cross channels are obtained. Transfer functions are also obtained, which are the ratio of the output signal to the measured value through direct and cross channels. It is noted that the predominant frequencies of the noise component of the output signal correspond to the rotational frequency of the gyroscope rotor, the rotation frequency of the gyroscope rotor and the multiple rotation frequencies of the gyroscope rotor. The structure of the system is proposed in which the signal from the gyroscope angle sensor with a spherical ball bearing suspension is summed up with the output signal of an additional angular velocity sensor according to the corresponding coordinate and then the total signal is smoothed using an aperiodic link of the first order. The results are obtained for determining the parameters of the channel of the angular velocity meter, at which it is possible to compensate for the bandwidth limitations in the channel of the angle measurement due to the time constant of the smoothing filter and at the same time ensure effective suppression of the noise component of the output signal. The proposed construction scheme of the meter provides attenuation of noise components in the output signal of a gyroscope with a spherical ball bearing suspension at a rotation frequency of the gyroscope rotor 250 Hz by 156 times, at a frequency of nutation oscillations of the gyroscope rotor 404 Hz by 256 times, at a frequency of 500 Hz by 316 times, at a frequency of 750 Hz by 474 times, at a frequency of 1000 Hz by 630 times, at a frequency of 1250 Hz by 785 times while maintaining a wide bandwidth of 285 Hz when measuring an angle with a phase lag of the output signal from the measured one close to zero degrees in the bandwidth.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87383751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the fourth-order model of the lateral motion of an aircraft with two controls, analytical expressions for the laws of stabilization control are obtained, which ensure the optimal placement of the poles. The synthesis is based on a two-level decomposition of the control object and the method of modal control of MIMO systems developed earlier by the authors with the optimal placement of the poles of a closed control system. The method is based on the features of quadratic control obtained by solving the nonlinear Lurie-Riccati matrix equation. In this case, for the optimal controller, it is necessary that the closed control object be asymptotically stable, and the matrix obtained by the product of the matrix of feedback coefficients by the control matrix of the dynamic plant must be positive-definite symmetric. Using this approach, final analytical expressions for the matrix of feedback coefficients are obtained and, accordingly, they can be used for any aircraft that has the same structure of its own dynamics and control matrices. The results of modeling the stabilization of the lateral motion of an aircraft using the obtained analytical control laws that ensure the optimal placement of the poles and, accordingly, the control laws using the decomposition method of synthesis with the same dynamic properties in the form of the value of the poles of a closed control system are presented. These properties correspond, as in the first case, to the optimal values of the placed poles. A comparison of transient processes by components of the maximum deviation of the controls shows that with optimal control, the maximum deviation of the rudder is 1.5 times less than with control using the standard decomposition method. All other parameters of the transient process, both in terms of the components of the state vector and the control vector, are approximately the same.
{"title":"Optimization of Stabilization of the Lateral Motion of an Aircraft Using the Decomposition Method of Modal Synthesis","authors":"N. Zubov, V. Ryabchenko","doi":"10.17587/mau.24.433-439","DOIUrl":"https://doi.org/10.17587/mau.24.433-439","url":null,"abstract":"For the fourth-order model of the lateral motion of an aircraft with two controls, analytical expressions for the laws of stabilization control are obtained, which ensure the optimal placement of the poles. The synthesis is based on a two-level decomposition of the control object and the method of modal control of MIMO systems developed earlier by the authors with the optimal placement of the poles of a closed control system. The method is based on the features of quadratic control obtained by solving the nonlinear Lurie-Riccati matrix equation. In this case, for the optimal controller, it is necessary that the closed control object be asymptotically stable, and the matrix obtained by the product of the matrix of feedback coefficients by the control matrix of the dynamic plant must be positive-definite symmetric. Using this approach, final analytical expressions for the matrix of feedback coefficients are obtained and, accordingly, they can be used for any aircraft that has the same structure of its own dynamics and control matrices. The results of modeling the stabilization of the lateral motion of an aircraft using the obtained analytical control laws that ensure the optimal placement of the poles and, accordingly, the control laws using the decomposition method of synthesis with the same dynamic properties in the form of the value of the poles of a closed control system are presented. These properties correspond, as in the first case, to the optimal values of the placed poles. A comparison of transient processes by components of the maximum deviation of the controls shows that with optimal control, the maximum deviation of the rudder is 1.5 times less than with control using the standard decomposition method. All other parameters of the transient process, both in terms of the components of the state vector and the control vector, are approximately the same.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84280187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Bobtsov, V. S. Vorobyev, N. Nikolaev, A. Pyrkin, R. Ortega
The paper is devoted to the problem of state variables observers synthesis for linear stationary system operating under condition of noise or disturbances in the measurement channel. The paper considers a completely observable linear stationary system with known parameters. It is assumed that the state variables are not measured, and the measured output variable contains a small amplitude (in general, modulo less than one) additive noise or disturbance. It is also assumed that there is no a priori information about the disturbance or noise in the measurement channel (for example, frequency spectrum, covariance, etc.). It is well known that many observer synthesis methods have been obtained for this type of systems, including the Kalman filter, which has proven itself in practice. Under the condition of complete observability and the presence of some a priori information about a random process (which is typical for the case when a disturbance in the measurement channel can be represented as white noise), approaches based on Kalman filtering demonstrate the highest quality estimates of state variables convergence to true values. Without disputing the numerous results obtained using the application of the Kalman filter, an alternative idea of the state variables observer constructing is considered in this paper. The alternative of the new approach is primarily due to the fact that there is no need to use the usual approaches based on the Luenberger observer. The paper proposes an approach based on the estimation of unknown parameters (in this case, an unknown vector of initial conditions of the plant state variables) of a linear regression model. Within the framework of the proposed method, after a simple transformation, a transition is made from a dynamic system to a linear regression model with unknown constant parameters containing noise or disturbing effects. After that, a new nonlinear parametrization of the original regression model and an algorithm for identifying unknown constant parameters using the procedure of dynamic expansion of the regressor and mixing are proposed which ensure reduction the influence of noise. The article presents the results of computer simulations verifying the stated theoretical results.
{"title":"Synthesis of Adaptive Observer of State Variables for a Linear Stationary Object in the Presence of Measurement Noise","authors":"A. Bobtsov, V. S. Vorobyev, N. Nikolaev, A. Pyrkin, R. Ortega","doi":"10.17587/mau.24.339-345","DOIUrl":"https://doi.org/10.17587/mau.24.339-345","url":null,"abstract":"The paper is devoted to the problem of state variables observers synthesis for linear stationary system operating under condition of noise or disturbances in the measurement channel. The paper considers a completely observable linear stationary system with known parameters. It is assumed that the state variables are not measured, and the measured output variable contains a small amplitude (in general, modulo less than one) additive noise or disturbance. It is also assumed that there is no a priori information about the disturbance or noise in the measurement channel (for example, frequency spectrum, covariance, etc.). It is well known that many observer synthesis methods have been obtained for this type of systems, including the Kalman filter, which has proven itself in practice. Under the condition of complete observability and the presence of some a priori information about a random process (which is typical for the case when a disturbance in the measurement channel can be represented as white noise), approaches based on Kalman filtering demonstrate the highest quality estimates of state variables convergence to true values. Without disputing the numerous results obtained using the application of the Kalman filter, an alternative idea of the state variables observer constructing is considered in this paper. The alternative of the new approach is primarily due to the fact that there is no need to use the usual approaches based on the Luenberger observer. The paper proposes an approach based on the estimation of unknown parameters (in this case, an unknown vector of initial conditions of the plant state variables) of a linear regression model. Within the framework of the proposed method, after a simple transformation, a transition is made from a dynamic system to a linear regression model with unknown constant parameters containing noise or disturbing effects. After that, a new nonlinear parametrization of the original regression model and an algorithm for identifying unknown constant parameters using the procedure of dynamic expansion of the regressor and mixing are proposed which ensure reduction the influence of noise. The article presents the results of computer simulations verifying the stated theoretical results.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85866743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multi-agent Unmanned Aerial Vehicle (UAV) systems require stable and high-precision navigation. The existing navigation solutions, such as global navigation satellite systems (GNSS) and inertial navigation systems, may perform inefficiently in some application scenarios. The relative navigation methods can help solve this problem. Relative navigation enables UAVs to precisely estimate their positions relative to each other, as opposed to absolute navigation, which calculates the UAVs’ position relative to the Earth. Despite the abundance of relative navigation articles, there are no systematic reviews of relative navigation methods. Additionally, various articles on relative navigation use a variety of terms for comparable concepts, which makes it more difficult to understand the subject. Therefore, this review comprehensively studies systematizes relative navigation methods, and analyzes their strengths and weaknesses. We categorize relative navigation methods appropriate for multi-UAV systems, compare them, and make conclusions based on our findings. The relative navigation methods discussed in this review include differential GNSS, radio-frequency-based, visual, and their combinations. We evaluate the achievable accuracy and range for each type of method according to related studies. We also describe the limitations and vulnerabilities of each method. As a result, we outline relative navigation’s primary capabilities and assess its condition now.
{"title":"Survey of Relative Navigation Methods for Multi-Agent Unmanned Aerial Vehicle Systems","authors":"A. R. Abdrashitov","doi":"10.17587/mau.24.364-373","DOIUrl":"https://doi.org/10.17587/mau.24.364-373","url":null,"abstract":"Multi-agent Unmanned Aerial Vehicle (UAV) systems require stable and high-precision navigation. The existing navigation solutions, such as global navigation satellite systems (GNSS) and inertial navigation systems, may perform inefficiently in some application scenarios. The relative navigation methods can help solve this problem. Relative navigation enables UAVs to precisely estimate their positions relative to each other, as opposed to absolute navigation, which calculates the UAVs’ position relative to the Earth. Despite the abundance of relative navigation articles, there are no systematic reviews of relative navigation methods. Additionally, various articles on relative navigation use a variety of terms for comparable concepts, which makes it more difficult to understand the subject. Therefore, this review comprehensively studies systematizes relative navigation methods, and analyzes their strengths and weaknesses. We categorize relative navigation methods appropriate for multi-UAV systems, compare them, and make conclusions based on our findings. The relative navigation methods discussed in this review include differential GNSS, radio-frequency-based, visual, and their combinations. We evaluate the achievable accuracy and range for each type of method according to related studies. We also describe the limitations and vulnerabilities of each method. As a result, we outline relative navigation’s primary capabilities and assess its condition now.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85173838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Filimonov, N. Filimonov, Т. К. Nguyen, Q. P. Pham
Currently one of the promising areas of joint use of unmanned aerial vehicles (UAVs) is group air patrolling of large territories. Here the organization of patrolling assumes the solving the planning problem of routes flight of UAV group. The paper considers the problem of optimal planning of flight routes of the same type of UAVs during group patrolling of large territories. The territorial waters or narrow border areas of any State may serve as an example of such territories. It is suggested that the patrolled area has an elongated shape and is divided into a chain of adjacent patrol zones prescribed by a separate UAV. The drone’s flight route passes through adjacent zones. The flight task performed periodically by each drone consists in moving it to a given flight zone, collecting operational data and transmitting this data to a control point (center, station). The optimization aspect of UAV flight route planning is to minimize the maximum time required to complete flight tasks. The considered problem of group patrolling reduced to the multiple traveling salesman problem — one of the classic intractable combinatorial optimization problems. A brief analysis of modern methods for solving the multiple traveling salesman problem is given. Due to the lack of effective exact methods for solving this problem, it is natural to use approximate heuristic and metaheuristic methods focused on solving NP-hard optimization problems, reducing the full search and giving a solution close to the exact one. The multiple traveling salesman problem considered in this paper is reduced to the problem of integer linear programming, for the solution of which a genetic algorithm implemented in MATLAB based on the mathematical package Global Optimization Toolbox is proposed. An illustrative example of patrolling by three UAVs of an extended territory with 11 adjacent zones is considered. Computational experiments confirm the effectiveness of the algorithmic solutions proposed in the work.
{"title":"Planning of UAV Flight Routes in the Problems of Group Patrolling of the Extended Territories","authors":"A. Filimonov, N. Filimonov, Т. К. Nguyen, Q. P. Pham","doi":"10.17587/mau.24.374-381","DOIUrl":"https://doi.org/10.17587/mau.24.374-381","url":null,"abstract":"Currently one of the promising areas of joint use of unmanned aerial vehicles (UAVs) is group air patrolling of large territories. Here the organization of patrolling assumes the solving the planning problem of routes flight of UAV group. The paper considers the problem of optimal planning of flight routes of the same type of UAVs during group patrolling of large territories. The territorial waters or narrow border areas of any State may serve as an example of such territories. It is suggested that the patrolled area has an elongated shape and is divided into a chain of adjacent patrol zones prescribed by a separate UAV. The drone’s flight route passes through adjacent zones. The flight task performed periodically by each drone consists in moving it to a given flight zone, collecting operational data and transmitting this data to a control point (center, station). The optimization aspect of UAV flight route planning is to minimize the maximum time required to complete flight tasks. The considered problem of group patrolling reduced to the multiple traveling salesman problem — one of the classic intractable combinatorial optimization problems. A brief analysis of modern methods for solving the multiple traveling salesman problem is given. Due to the lack of effective exact methods for solving this problem, it is natural to use approximate heuristic and metaheuristic methods focused on solving NP-hard optimization problems, reducing the full search and giving a solution close to the exact one. The multiple traveling salesman problem considered in this paper is reduced to the problem of integer linear programming, for the solution of which a genetic algorithm implemented in MATLAB based on the mathematical package Global Optimization Toolbox is proposed. An illustrative example of patrolling by three UAVs of an extended territory with 11 adjacent zones is considered. Computational experiments confirm the effectiveness of the algorithmic solutions proposed in the work.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81882538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A review of models and algorithms for control of a stepper motor (SM) is presented. Due to high accuracy, improved power density, economy and reliability compared to other synchronous motors, stepper motors are widely used in various practical applications and scientific equipment. In aviation and space technology, step motors are actively used in actuating systems, such as drives for the movement of elements of large-sized structures, guidance, and stabilization systems, etc. The article describes some existing stepper motor control algorithms, which are both based on the knowledge of the parameters of the stepper motor model, and on the absence of this or that information. Of the many described algorithms, four were selected (PID controller, exact feedback linearization algorithm, adaptive control with partially unknown parameters and adaptive control with completely unknown parameters), which showed the best results of transient processes in tracking the angle of the rotor of the SM behind the reference value. A comparative numerical analysis among these four algorithms is also given, which showed that the best results of transients are demonstrated by adaptive controllers (in the sense of the smallest error in steady state), while the worst results are demonstrated by the PID controller. It is noted that the studied PID controller contains much fewer feedback loops compared to other algorithms, which simplifies the choice of adjustable parameters and reduces the dynamic order of the closed system, however, the design is based on knowing the exact parameters of the drive and is also sensitive to external disturbances. On the contrary, adaptive approaches successfully solve the problem of estimating parametric and functional perturbations, but their implementation is associated with significant difficulties.
{"title":"Overview of Models and Methods for Control of Stepper Motors","authors":"I. Furtat, Y. Zhukov, N. Slobodzyan","doi":"10.17587/mau.24.352-363","DOIUrl":"https://doi.org/10.17587/mau.24.352-363","url":null,"abstract":"A review of models and algorithms for control of a stepper motor (SM) is presented. Due to high accuracy, improved power density, economy and reliability compared to other synchronous motors, stepper motors are widely used in various practical applications and scientific equipment. In aviation and space technology, step motors are actively used in actuating systems, such as drives for the movement of elements of large-sized structures, guidance, and stabilization systems, etc. The article describes some existing stepper motor control algorithms, which are both based on the knowledge of the parameters of the stepper motor model, and on the absence of this or that information. Of the many described algorithms, four were selected (PID controller, exact feedback linearization algorithm, adaptive control with partially unknown parameters and adaptive control with completely unknown parameters), which showed the best results of transient processes in tracking the angle of the rotor of the SM behind the reference value. A comparative numerical analysis among these four algorithms is also given, which showed that the best results of transients are demonstrated by adaptive controllers (in the sense of the smallest error in steady state), while the worst results are demonstrated by the PID controller. It is noted that the studied PID controller contains much fewer feedback loops compared to other algorithms, which simplifies the choice of adjustable parameters and reduces the dynamic order of the closed system, however, the design is based on knowing the exact parameters of the drive and is also sensitive to external disturbances. On the contrary, adaptive approaches successfully solve the problem of estimating parametric and functional perturbations, but their implementation is associated with significant difficulties.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87968981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article is devoted to the development and research of a kinematic model of stabilization and orientation control of the suspended equipment of an unmanned aerial vehicle (UAV). The created model is based on the kinematic model of a three-axis gimbal (TAG): the structure of the TAG for the UAV, the mathematical description of the TAG of the UAV and the derivation of kinematic equations for the problems of stabilizing and controlling the orientation of the UAV suspension equipment. In the general case, the derivation of the kinematic equations of the TAG on the UAV is a complex process and is similar to the derivation of a kinematic model of a robotic arm with six degrees of freedom. The TAG is considered as a manipulative mechanism with six degrees of freedom: three degrees of freedom are determined by the UAV rotations around the axes of the coordinate system attached to the UAV, and three degrees of freedom are set by the frames of the TAG along the channels of yaw, roll and pitch during rotational movements of these frames around the corresponding axes of the coordinate systems attached to the frames of the TAG. Such a statement in the general case does not have an unambiguous solution for the tasks of stabilization and orientation control of the suspended equipment of UAV. To eliminate this ambiguity, optimization is used in the process of designing the TAG and installing the TAG in such positions on the UAV that reduce the computational complexity of the tasks being solved. The kinematic model is presented in the article by kinematic equations, the solution of which ensures the stabilization of the suspended equipment of UAV, and kinematic equations, the solution of which allows you to control the equipment (camera) of the UAV when tracking moving objects (moving targets) in space. The simulation of the TAG in the MATLAB Simulink software environment was performed. The simulation results in the MATLAB Simulink software environment prove the adequacy of the developed kinematic model of the TAG and its effectiveness for solving the problems of stabilization and orientation control of the suspended equipment of UAV.
{"title":"Kinematic Model for Stabilization and Orientation Control of the Suspended Equipment of an Unmanned Aerial Vehicle","authors":"A. Korikov, V. Tran","doi":"10.17587/mau.24.382-390","DOIUrl":"https://doi.org/10.17587/mau.24.382-390","url":null,"abstract":"The article is devoted to the development and research of a kinematic model of stabilization and orientation control of the suspended equipment of an unmanned aerial vehicle (UAV). The created model is based on the kinematic model of a three-axis gimbal (TAG): the structure of the TAG for the UAV, the mathematical description of the TAG of the UAV and the derivation of kinematic equations for the problems of stabilizing and controlling the orientation of the UAV suspension equipment. In the general case, the derivation of the kinematic equations of the TAG on the UAV is a complex process and is similar to the derivation of a kinematic model of a robotic arm with six degrees of freedom. The TAG is considered as a manipulative mechanism with six degrees of freedom: three degrees of freedom are determined by the UAV rotations around the axes of the coordinate system attached to the UAV, and three degrees of freedom are set by the frames of the TAG along the channels of yaw, roll and pitch during rotational movements of these frames around the corresponding axes of the coordinate systems attached to the frames of the TAG. Such a statement in the general case does not have an unambiguous solution for the tasks of stabilization and orientation control of the suspended equipment of UAV. To eliminate this ambiguity, optimization is used in the process of designing the TAG and installing the TAG in such positions on the UAV that reduce the computational complexity of the tasks being solved. The kinematic model is presented in the article by kinematic equations, the solution of which ensures the stabilization of the suspended equipment of UAV, and kinematic equations, the solution of which allows you to control the equipment (camera) of the UAV when tracking moving objects (moving targets) in space. The simulation of the TAG in the MATLAB Simulink software environment was performed. The simulation results in the MATLAB Simulink software environment prove the adequacy of the developed kinematic model of the TAG and its effectiveness for solving the problems of stabilization and orientation control of the suspended equipment of UAV.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86767730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The actual problems of artificial intelligence related to the development of tools for abstract thinking of autonomous intelligent mobile systems are being solved, which allow planning purposeful behavior in hard-to-reach and aggressive environments for humans. Cognitive tools are proposed that provide intelligent systems with the ability to organize purposeful multi-stage activities related to solving complex problems, when a behavior plan is automatically built in some conditions of a problematic environment, and a given behavior goal is achieved in other operating conditions that are beyond the resolution of technical vision. An important feature of the proposed typical elements of knowledge representation and processing is that they allow intelligent systems to organize the output of solving complex problems, relying only on the data stored in the knowledge representation model and coming from the current operating conditions. In the general case, the developed knowledge model of intelligent systems for various purposes consists of declarative and procedural typical elements of their representation. For a formal description of typical elements of declarative knowledge representation, traditional semantic networks and various sets of restrictions are used, reflecting additional conditions for the future functioning of autonomous mobile intelligent systems. As for the formal description of the typical elements of the representation of procedural knowledge, regardless of a specific subject area, fuzzy semantic networks are used for this. This allows autonomous intelligent mobile systems to adapt to specific operating conditions in underdetermined problematic environments and perform complex tasks formulated by them on this basis. The practical significance of the results obtained lies in the effectiveness of their use for the development of intelligent problem solvers that provide autonomous intelligent mobile systems for various purposes with the ability to perform complex tasks in a priori underdetermined problematic environments by adapting the purposeful activity plan formed in general form to specific current operating conditions.
{"title":"Cognitive Tools for Abstract Thinking Autonomous Intelligent Mobile Systems","authors":"V. Melekhin, M. Khachumov","doi":"10.17587/mau.24.317-326","DOIUrl":"https://doi.org/10.17587/mau.24.317-326","url":null,"abstract":"The actual problems of artificial intelligence related to the development of tools for abstract thinking of autonomous intelligent mobile systems are being solved, which allow planning purposeful behavior in hard-to-reach and aggressive environments for humans. Cognitive tools are proposed that provide intelligent systems with the ability to organize purposeful multi-stage activities related to solving complex problems, when a behavior plan is automatically built in some conditions of a problematic environment, and a given behavior goal is achieved in other operating conditions that are beyond the resolution of technical vision. An important feature of the proposed typical elements of knowledge representation and processing is that they allow intelligent systems to organize the output of solving complex problems, relying only on the data stored in the knowledge representation model and coming from the current operating conditions. In the general case, the developed knowledge model of intelligent systems for various purposes consists of declarative and procedural typical elements of their representation. For a formal description of typical elements of declarative knowledge representation, traditional semantic networks and various sets of restrictions are used, reflecting additional conditions for the future functioning of autonomous mobile intelligent systems. As for the formal description of the typical elements of the representation of procedural knowledge, regardless of a specific subject area, fuzzy semantic networks are used for this. This allows autonomous intelligent mobile systems to adapt to specific operating conditions in underdetermined problematic environments and perform complex tasks formulated by them on this basis. The practical significance of the results obtained lies in the effectiveness of their use for the development of intelligent problem solvers that provide autonomous intelligent mobile systems for various purposes with the ability to perform complex tasks in a priori underdetermined problematic environments by adapting the purposeful activity plan formed in general form to specific current operating conditions.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"129 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72568256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article studies a trajectory planning task for a group of UGVs with a consideration of wheels-terrain adhesion variation. Within this paper a brief analysis devoted to existing trajectory planning is done. It outcomes with a conclusion of a necessity to produce additional research within this topic. This paper suggests to use a Sampling-based method to solve this trajectory planning task. An algorithm of rapidly exploring random tree (RRT) is used as a basic algorithm. An advantage of this method (typical for Sampling-based methods) is a simplicity of various non-linear restrictions introduction (e.g. obstacles, differential restrictions etc.). In addition we should mention good potential for algorithm parallelization, because of tree structure of the algorithm. However there exists a shortage of the proposed methods — a high consumption of computational resources, and as an outcome a long calculus duration. This paper proposes to overcome this shortage via distributing of computation among UGVs — actors of a group. This is followed by a comparative analysis of distributed and centralized methods. Analysis shows that the main advantage of proposed method is that it can use almost all models of interaction between wheel and terrain. The latter can act a component for calculation of restrictions for motion acceleration over certain types of terrain. Within this paper we did not study models of interaction between wheel and terrain, but instead used empirical data of allowed values of tangential and normal accelerations for specific UGVs in particular conditions. In final part we present results of simulation witch confirm effectiveness of proposed methods.
{"title":"Distributed Trajectory Planning for a Group of UGVs Carrying a Load Considerting Terrain Properties","authors":"I. Ermolov, B. S. Lapin","doi":"10.17587/mau.24.327-334","DOIUrl":"https://doi.org/10.17587/mau.24.327-334","url":null,"abstract":"The article studies a trajectory planning task for a group of UGVs with a consideration of wheels-terrain adhesion variation. Within this paper a brief analysis devoted to existing trajectory planning is done. It outcomes with a conclusion of a necessity to produce additional research within this topic. This paper suggests to use a Sampling-based method to solve this trajectory planning task. An algorithm of rapidly exploring random tree (RRT) is used as a basic algorithm. An advantage of this method (typical for Sampling-based methods) is a simplicity of various non-linear restrictions introduction (e.g. obstacles, differential restrictions etc.). In addition we should mention good potential for algorithm parallelization, because of tree structure of the algorithm. However there exists a shortage of the proposed methods — a high consumption of computational resources, and as an outcome a long calculus duration. This paper proposes to overcome this shortage via distributing of computation among UGVs — actors of a group. This is followed by a comparative analysis of distributed and centralized methods. Analysis shows that the main advantage of proposed method is that it can use almost all models of interaction between wheel and terrain. The latter can act a component for calculation of restrictions for motion acceleration over certain types of terrain. Within this paper we did not study models of interaction between wheel and terrain, but instead used empirical data of allowed values of tangential and normal accelerations for specific UGVs in particular conditions. In final part we present results of simulation witch confirm effectiveness of proposed methods.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89502272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}