首页 > 最新文献

Future Lithium-ion Batteries最新文献

英文 中文
CHAPTER 8. From Lithium to Sodium and Potassium Batteries 第八章。从锂电池到钠和钾电池
Pub Date : 2019-03-14 DOI: 10.1039/9781788016124-00181
A. Hameed, K. Kubota, S. Komaba
Lithium-ion batteries have the highest volumetric and gravimetric energy densities among the available rechargeable batteries, hence they are the prime choice of power source in numerous portable devices. It is expected that there will be tremendous growth in electric vehicles and electrical energy storage in the future. Employing Li-ion batteries on a large scale may strain the lithium supply due to geopolitical constraints and the lower abundance of lithium resources in the Earth's crust. Therefore, sustainable and low-cost alternate energy storage systems are necessary. In this chapter, the prospects for alternate energy storage systems are reviewed for sustainable/green energy in the future along with research progress in the field of sodium- and potassium-ion batteries.
在现有的可充电电池中,锂离子电池具有最高的体积和重量能量密度,因此它们是许多便携式设备的首选电源。预计未来电动汽车和电能存储将有巨大的增长。由于地缘政治的限制和地壳中锂资源的低丰度,大规模使用锂离子电池可能会使锂供应紧张。因此,可持续和低成本的替代能源存储系统是必要的。在本章中,结合钠离子电池和钾离子电池领域的研究进展,综述了未来可持续/绿色能源替代储能系统的发展前景。
{"title":"CHAPTER 8. From Lithium to Sodium and Potassium Batteries","authors":"A. Hameed, K. Kubota, S. Komaba","doi":"10.1039/9781788016124-00181","DOIUrl":"https://doi.org/10.1039/9781788016124-00181","url":null,"abstract":"Lithium-ion batteries have the highest volumetric and gravimetric energy densities among the available rechargeable batteries, hence they are the prime choice of power source in numerous portable devices. It is expected that there will be tremendous growth in electric vehicles and electrical energy storage in the future. Employing Li-ion batteries on a large scale may strain the lithium supply due to geopolitical constraints and the lower abundance of lithium resources in the Earth's crust. Therefore, sustainable and low-cost alternate energy storage systems are necessary. In this chapter, the prospects for alternate energy storage systems are reviewed for sustainable/green energy in the future along with research progress in the field of sodium- and potassium-ion batteries.","PeriodicalId":366270,"journal":{"name":"Future Lithium-ion Batteries","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116845892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
CHAPTER 13. Challenges and Opportunities in Lithium-ion Battery Supply 第13章。锂离子电池供应的挑战与机遇
Pub Date : 2019-03-14 DOI: 10.1039/9781788016124-00316
Wolfgang Bernhart
The demand for batteries from the automotive industry sector is the main driver for the future lithium-ion battery market. The cell manufacturing market is dominated by a few large players from Asia, with China getting more important. Cell costs will level out around €75 kWh−1 in the second half of the next decade. Increased volumetric energy density is the main cost reduction lever, but manufacturing processes will also provide further cost reduction opportunities. In that context, for solid state technology to be successful in automotive application, it must fulfil all important performance requirements such as fast charging capabilities, long cycle life and safety, while being significantly cheaper. Process technology development will scale volume of cathode active material processing units, causing a severe cost disadvantage risk to small sized players. Overall, demand for (battery-grade) nickel, cobalt and lithium will increase significantly. Therefore price risks due to high concentration levels for raw and refined materials and political country risks need to be mitigated, but supply shortages are unlikely. As a consequence recycling is getting increasingly important—from a cost perspective, as well as from the perspective of securing raw material supply.
汽车行业对电池的需求是未来锂离子电池市场的主要驱动力。电池制造市场由来自亚洲的几家大型企业主导,中国变得越来越重要。在未来十年的后半段,电池成本将稳定在75千瓦时- 1欧元左右。增加体积能量密度是降低成本的主要手段,但制造工艺也将提供进一步降低成本的机会。在这种情况下,固态技术要想在汽车应用中取得成功,就必须满足所有重要的性能要求,如快速充电能力、长循环寿命和安全性,同时价格要低得多。工艺技术的发展将扩大阴极活性材料加工单元的规模,给小型企业带来严重的成本劣势风险。总体而言,对(电池级)镍、钴和锂的需求将显著增加。因此,由于原材料和精炼材料的高度集中而产生的价格风险和政治国家风险需要得到缓解,但供应短缺的可能性不大。因此,无论是从成本的角度,还是从确保原材料供应的角度来看,回收都变得越来越重要。
{"title":"CHAPTER 13. Challenges and Opportunities in Lithium-ion Battery Supply","authors":"Wolfgang Bernhart","doi":"10.1039/9781788016124-00316","DOIUrl":"https://doi.org/10.1039/9781788016124-00316","url":null,"abstract":"The demand for batteries from the automotive industry sector is the main driver for the future lithium-ion battery market. The cell manufacturing market is dominated by a few large players from Asia, with China getting more important. Cell costs will level out around €75 kWh−1 in the second half of the next decade. Increased volumetric energy density is the main cost reduction lever, but manufacturing processes will also provide further cost reduction opportunities. In that context, for solid state technology to be successful in automotive application, it must fulfil all important performance requirements such as fast charging capabilities, long cycle life and safety, while being significantly cheaper. Process technology development will scale volume of cathode active material processing units, causing a severe cost disadvantage risk to small sized players. Overall, demand for (battery-grade) nickel, cobalt and lithium will increase significantly. Therefore price risks due to high concentration levels for raw and refined materials and political country risks need to be mitigated, but supply shortages are unlikely. As a consequence recycling is getting increasingly important—from a cost perspective, as well as from the perspective of securing raw material supply.","PeriodicalId":366270,"journal":{"name":"Future Lithium-ion Batteries","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125508501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
CHAPTER 6. Liquid Non-aqueous Electrolytes for High Voltage Lithium Ion Batteries 第六章。高压锂离子电池用液体非水电解质
Pub Date : 2019-03-14 DOI: 10.1039/9781788016124-00130
L. Xing, Weishan Li
The instability of the electrode/electrolyte interphase in lithium-ion batteries mainly causes gas generation, increase of cell resistance and capacity fading, especially at high operating voltage. Searching for novel electrolytes that match the developed high specific capacity and high voltage cathode materials is critical for the practical application of next generation lithium-ion batteries. We describe in this chapter the major research on understanding the specific electrolyte component of the high voltage electrode/electrolyte interphase, the influence of the lithium salt anion on the oxidation stability and the decomposition mechanism of the interphasal electrolyte and developing novel electrolytes for next generation lithium-ion batteries.
锂离子电池中电极/电解质界面的不稳定性主要导致电池产生气体、电池电阻增加和容量衰退,特别是在高工作电压下。寻找与已开发的高比容量和高压正极材料相匹配的新型电解质对于下一代锂离子电池的实际应用至关重要。本章主要介绍了高压电极/电解质间相特定电解质组分的研究、锂盐阴离子对间相电解质氧化稳定性和分解机理的影响以及下一代锂离子电池新型电解质的开发。
{"title":"CHAPTER 6. Liquid Non-aqueous Electrolytes for High Voltage Lithium Ion Batteries","authors":"L. Xing, Weishan Li","doi":"10.1039/9781788016124-00130","DOIUrl":"https://doi.org/10.1039/9781788016124-00130","url":null,"abstract":"The instability of the electrode/electrolyte interphase in lithium-ion batteries mainly causes gas generation, increase of cell resistance and capacity fading, especially at high operating voltage. Searching for novel electrolytes that match the developed high specific capacity and high voltage cathode materials is critical for the practical application of next generation lithium-ion batteries. We describe in this chapter the major research on understanding the specific electrolyte component of the high voltage electrode/electrolyte interphase, the influence of the lithium salt anion on the oxidation stability and the decomposition mechanism of the interphasal electrolyte and developing novel electrolytes for next generation lithium-ion batteries.","PeriodicalId":366270,"journal":{"name":"Future Lithium-ion Batteries","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131997186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CHAPTER 14. Emerging Market of Household Batteries 第14章。家用电池新兴市场
Pub Date : 1900-01-01 DOI: 10.1039/9781788016124-00335
D. Parra
{"title":"CHAPTER 14. Emerging Market of Household Batteries","authors":"D. Parra","doi":"10.1039/9781788016124-00335","DOIUrl":"https://doi.org/10.1039/9781788016124-00335","url":null,"abstract":"","PeriodicalId":366270,"journal":{"name":"Future Lithium-ion Batteries","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124330392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Future Lithium-ion Batteries
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1