首页 > 最新文献

Progress in Additive Manufacturing最新文献

英文 中文
High conductive copper alloys for additive manufacturing 增材制造用高导电性铜合金
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-31 DOI: 10.1007/s40964-023-00527-3
T. Fiedler, M. Jähnig Domingues, C. Winter, J. Rösler
Abstract For applications where high thermal and/or electrical conductivity combined with reasonably high strength is required, copper alloys may be used. Although many different alloys were already developed in the past, additive manufacturing like laser powder bed fusion (PBF-LB/M) opens up new possibilities for alloy development, mainly driven by the very high cooling rates. This allows for the usage of precipitation-hardened alloys with compositions exceeding the maximum solubility. The present work focuses on the investigation of a well-known CuCr1Zr alloy as well as CuZr alloys with 1 and 2 wt.% Zr. For a fast, resource-efficient screening and demonstration of feasibility, the investigated alloys were not printed from powder. Instead, solid sheets were partially re-melted in a PBF-LB/M machine to obtain a microstructure similar to the printed state. This rapid-solidification microstructure is investigated, and precipitates with a size 50 nm or even smaller are found. After subsequent aging heat treatments, the hardness of the alloys exceeds the maximum hardness achievable with conventional manufacturing methods (excluding work hardening). The investigations in this work revealed the great hardening potential of these alloys for usage in the PBF-LB/M process.
对于需要高导热性和/或导电性并具有相当高强度的应用场合,可以使用铜合金。虽然过去已经开发了许多不同的合金,但激光粉末床熔融(PBF-LB/M)等增材制造为合金开发开辟了新的可能性,主要是由非常高的冷却速率驱动的。这允许使用成分超过最大溶解度的沉淀硬化合金。本文主要研究了一种已知的CuCr1Zr合金以及Zr含量为1 wt.%和2 wt.%的CuZr合金。为了快速、高效地筛选和证明可行性,所研究的合金没有从粉末中打印出来。相反,固体薄片在PBF-LB/M机器中部分重新熔化,以获得与印刷状态相似的微观结构。研究了这种快速凝固组织,发现了尺寸为50nm甚至更小的析出物。在随后的时效热处理后,合金的硬度超过了常规制造方法(不包括加工硬化)所能达到的最大硬度。本工作的研究表明,这些合金在PBF-LB/M工艺中具有很大的硬化潜力。
{"title":"High conductive copper alloys for additive manufacturing","authors":"T. Fiedler, M. Jähnig Domingues, C. Winter, J. Rösler","doi":"10.1007/s40964-023-00527-3","DOIUrl":"https://doi.org/10.1007/s40964-023-00527-3","url":null,"abstract":"Abstract For applications where high thermal and/or electrical conductivity combined with reasonably high strength is required, copper alloys may be used. Although many different alloys were already developed in the past, additive manufacturing like laser powder bed fusion (PBF-LB/M) opens up new possibilities for alloy development, mainly driven by the very high cooling rates. This allows for the usage of precipitation-hardened alloys with compositions exceeding the maximum solubility. The present work focuses on the investigation of a well-known CuCr1Zr alloy as well as CuZr alloys with 1 and 2 wt.% Zr. For a fast, resource-efficient screening and demonstration of feasibility, the investigated alloys were not printed from powder. Instead, solid sheets were partially re-melted in a PBF-LB/M machine to obtain a microstructure similar to the printed state. This rapid-solidification microstructure is investigated, and precipitates with a size 50 nm or even smaller are found. After subsequent aging heat treatments, the hardness of the alloys exceeds the maximum hardness achievable with conventional manufacturing methods (excluding work hardening). The investigations in this work revealed the great hardening potential of these alloys for usage in the PBF-LB/M process.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"449 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy absorption of 3D printed multi-material elastic lattice structures 3D打印多材料弹性晶格结构的能量吸收
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-30 DOI: 10.1007/s40964-023-00529-1
Conner Kreide, Ermias Koricho, Kamran Kardel
{"title":"Energy absorption of 3D printed multi-material elastic lattice structures","authors":"Conner Kreide, Ermias Koricho, Kamran Kardel","doi":"10.1007/s40964-023-00529-1","DOIUrl":"https://doi.org/10.1007/s40964-023-00529-1","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136067891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special issue “New Trends in 4D Printing: from Design to Materials and Applications” 特刊“4D打印新趋势:从设计到材料和应用”
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-30 DOI: 10.1007/s40964-023-00512-w
Ali Zolfagharian, Eujin Pei, Giulia Scalet, Mahdi Bodaghi
{"title":"Special issue “New Trends in 4D Printing: from Design to Materials and Applications”","authors":"Ali Zolfagharian, Eujin Pei, Giulia Scalet, Mahdi Bodaghi","doi":"10.1007/s40964-023-00512-w","DOIUrl":"https://doi.org/10.1007/s40964-023-00512-w","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"24 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136023367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal casting into NaCl molds fabricated by material extrusion 3D printing 金属浇铸入材料挤压3D打印制造的NaCl模具中
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-29 DOI: 10.1007/s40964-023-00528-2
René Wick-Joliat, Dirk Penner
Abstract Aluminum die casting is a well-established industrial process for mass producing aluminum parts with complex shapes, but design restrictions exclude some features like undercuts and hollow structures from being produced with this method. Water-soluble casting molds offer a promising solution to overcome those restrains, for example by hot pressing of salt cores or 3D printing of NaCl molds. Presently, 3D printing techniques available for NaCl are limited to direct ink writing (DIW) and photopolymerization. This study presents an approach to prepare NaCl parts by thermoplastic material extrusion (MEX) 3D printing. Firstly, a 3D printable feedstock is developed consisting of an organic binder, which is usually used for ceramic injection molding, and sodium chloride (NaCl) salt crystals. Various molds are then printed on a granulate-fed MEX printer. After thermal debinding and sintering at 690 °C, the 3D printed parts consist of pure NaCl. Furthermore, the same NaCl feedstock is used for injection molding. The bending strength of 3D printed samples with and without post-treatment are measured and compared to injection molded test specimens. Finally, metal casting in 3D printed NaCl molds is shown with tin or aluminum and the metal demonstrator parts with complex geometries such as gyroid structures and turbine wheels are released by dissolving the NaCl molds in water.
铝压铸是一种成熟的工业工艺,用于批量生产具有复杂形状的铝零件,但设计限制排除了一些特征,如凹口和空心结构,无法用这种方法生产。水溶性铸造模具为克服这些限制提供了一个很有前途的解决方案,例如通过热压盐芯或3D打印NaCl模具。目前,可用于NaCl的3D打印技术仅限于直接墨水书写(DIW)和光聚合。本研究提出了一种热塑性材料挤压(MEX) 3D打印制备NaCl零件的方法。首先,开发了一种可3D打印的原料,由有机粘合剂(通常用于陶瓷注塑成型)和氯化钠(NaCl)盐晶体组成。然后在颗粒式MEX打印机上打印各种模具。经过690℃的热脱脂和烧结后,3D打印部件由纯NaCl组成。此外,同样的NaCl原料用于注射成型。测量了经过后处理和未经过后处理的3D打印样品的抗弯强度,并与注塑测试样品进行了比较。最后,3D打印的NaCl模具中的金属铸件用锡或铝来展示,并且通过将NaCl模具溶解在水中来释放具有复杂几何形状的金属演示部件,例如陀螺结构和涡轮。
{"title":"Metal casting into NaCl molds fabricated by material extrusion 3D printing","authors":"René Wick-Joliat, Dirk Penner","doi":"10.1007/s40964-023-00528-2","DOIUrl":"https://doi.org/10.1007/s40964-023-00528-2","url":null,"abstract":"Abstract Aluminum die casting is a well-established industrial process for mass producing aluminum parts with complex shapes, but design restrictions exclude some features like undercuts and hollow structures from being produced with this method. Water-soluble casting molds offer a promising solution to overcome those restrains, for example by hot pressing of salt cores or 3D printing of NaCl molds. Presently, 3D printing techniques available for NaCl are limited to direct ink writing (DIW) and photopolymerization. This study presents an approach to prepare NaCl parts by thermoplastic material extrusion (MEX) 3D printing. Firstly, a 3D printable feedstock is developed consisting of an organic binder, which is usually used for ceramic injection molding, and sodium chloride (NaCl) salt crystals. Various molds are then printed on a granulate-fed MEX printer. After thermal debinding and sintering at 690 °C, the 3D printed parts consist of pure NaCl. Furthermore, the same NaCl feedstock is used for injection molding. The bending strength of 3D printed samples with and without post-treatment are measured and compared to injection molded test specimens. Finally, metal casting in 3D printed NaCl molds is shown with tin or aluminum and the metal demonstrator parts with complex geometries such as gyroid structures and turbine wheels are released by dissolving the NaCl molds in water.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"17 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136134592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational model for stereolithography apparatus (SLA) 3D printing 立体光刻设备(SLA) 3D打印的计算模型
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-28 DOI: 10.1007/s40964-023-00525-5
Nandagopal Vidhu, Ayush Gupta, Roozbeh Salajeghe, Jon Spangenberg, Deepak Marla
{"title":"A computational model for stereolithography apparatus (SLA) 3D printing","authors":"Nandagopal Vidhu, Ayush Gupta, Roozbeh Salajeghe, Jon Spangenberg, Deepak Marla","doi":"10.1007/s40964-023-00525-5","DOIUrl":"https://doi.org/10.1007/s40964-023-00525-5","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"217 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136159369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adapting Fe–Mn–Si–Cr shape memory alloy for laser powder bed fusion by adjusting the Mn content 通过调整锰含量调整用于激光粉末床熔化的铁-锰-硅-脆形状记忆合金
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-28 DOI: 10.1007/s40964-023-00526-4
Eric Gärtner, Inga Meyenborg, A. Toenjes
{"title":"Adapting Fe–Mn–Si–Cr shape memory alloy for laser powder bed fusion by adjusting the Mn content","authors":"Eric Gärtner, Inga Meyenborg, A. Toenjes","doi":"10.1007/s40964-023-00526-4","DOIUrl":"https://doi.org/10.1007/s40964-023-00526-4","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"277 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139312104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron beam melting additive manufacturing process efficiency study of stainless steel 不锈钢电子束熔化增材制造工艺效率研究
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-27 DOI: 10.1007/s40964-023-00522-8
Elroei Damri, Itzhak Orion, Yaron I. Ganor, Dor Braun, Eitan Tiferet
{"title":"Electron beam melting additive manufacturing process efficiency study of stainless steel","authors":"Elroei Damri, Itzhak Orion, Yaron I. Ganor, Dor Braun, Eitan Tiferet","doi":"10.1007/s40964-023-00522-8","DOIUrl":"https://doi.org/10.1007/s40964-023-00522-8","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136261629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solidification of the Ni-based superalloy CMSX-4 simulated with full complexity in 3-dimensions 三维模拟了ni基高温合金CMSX-4的凝固过程
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-24 DOI: 10.1007/s40964-023-00513-9
Murali Uddagiri, Oleg Shchyglo, Ingo Steinbach, Marvin Tegeler
Abstract In this work, we present phase-field (PF) simulations directly coupled to thermodynamic and kinetic databases in three dimensions. The direct coupling allows consideration of the full alloy complexity of the CMSX-4 superalloy over a large range of temperatures. The simulation conditions are chosen for additive manufacturing utilizing Electron Beam Melting (EBM). Transformation of interdendritic liquid into eutectic $$gamma '$$ γ is considered. The simulation results confirm the unique segregation behavior of all the alloying elements. It is demonstrated that the treatment of the full complexity of alloy composition is superior to all approximations with quasi-binary or -ternary approximation and justifies the significantly increased computational effort. Our results demonstrate that multi-component simulations must become a standard for phase-field applications to real material systems.
在这项工作中,我们提出了直接耦合到热力学和动力学数据库的三维相场(PF)模拟。直接耦合允许考虑CMSX-4高温合金在大温度范围内的全合金复杂性。选择了电子束熔化增材制造的仿真条件。考虑了枝晶间液体向共晶$$gamma '$$ γ′的转变。模拟结果证实了各合金元素具有独特的偏析行为。结果表明,处理合金成分的全部复杂性优于所有准二元或三元近似的近似,并证明了显著增加的计算工作量。我们的结果表明,多组分模拟必须成为相场应用于实际材料系统的标准。
{"title":"Solidification of the Ni-based superalloy CMSX-4 simulated with full complexity in 3-dimensions","authors":"Murali Uddagiri, Oleg Shchyglo, Ingo Steinbach, Marvin Tegeler","doi":"10.1007/s40964-023-00513-9","DOIUrl":"https://doi.org/10.1007/s40964-023-00513-9","url":null,"abstract":"Abstract In this work, we present phase-field (PF) simulations directly coupled to thermodynamic and kinetic databases in three dimensions. The direct coupling allows consideration of the full alloy complexity of the CMSX-4 superalloy over a large range of temperatures. The simulation conditions are chosen for additive manufacturing utilizing Electron Beam Melting (EBM). Transformation of interdendritic liquid into eutectic $$gamma '$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>γ</mml:mi> <mml:mo>′</mml:mo> </mml:msup> </mml:math> is considered. The simulation results confirm the unique segregation behavior of all the alloying elements. It is demonstrated that the treatment of the full complexity of alloy composition is superior to all approximations with quasi-binary or -ternary approximation and justifies the significantly increased computational effort. Our results demonstrate that multi-component simulations must become a standard for phase-field applications to real material systems.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"14 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135316276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple potential energy formulation for 3D concrete printed structures considering the shear effects in the build direction 考虑建筑方向剪切效应的三维混凝土打印结构的简单势能公式
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-20 DOI: 10.1007/s40964-023-00509-5
Lalit Kumar, Biranchi Panda, N. Muthu
{"title":"A simple potential energy formulation for 3D concrete printed structures considering the shear effects in the build direction","authors":"Lalit Kumar, Biranchi Panda, N. Muthu","doi":"10.1007/s40964-023-00509-5","DOIUrl":"https://doi.org/10.1007/s40964-023-00509-5","url":null,"abstract":"","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135617862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and numerical investigations of the hot cracking susceptibility during the powder bed fusion of AA 7075 using a laser beam 激光对AA 7075粉末床熔合热裂敏感性的实验与数值研究
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-17 DOI: 10.1007/s40964-023-00523-7
Andreas Wimmer, Hannes Panzer, Christopher Zoeller, Stefan Adami, Nikolaus A. Adams, Michael F. Zaeh
Abstract The variety of processable materials for the powder bed fusion of metals using a laser beam (PBF-LB/M) is still limited. In particular, high-strength aluminum alloys are difficult to process with PBF-LB/M without the occurrence of hot cracks. In situ alloying is a promising method to modify the physical properties of an alloy to reduce its hot cracking susceptibility. In this work, the aluminum alloy 7075 and blends with 2 wt.%, 4 wt.%, and 6 wt.% of Si were processed via PBF-LB/M. The Rappaz–Drezet–Gremaud (RDG) model and the Kou model were investigated regarding their capability of predicting the hot cracking behavior for the aluminum alloy 7075 and the three powder blends. The smoothed-particle hydrodynamics (SPH) method was used to gain the thermal input data for the RDG model. A clear tendency of a reduced hot cracking susceptibility with an increasing amount of Si was observed in the experiments and in the simulations. A detailed analysis of the type of the hot cracking mechanism in the aluminum alloy 7075 provided several indications of the presence of liquation cracking. The Kou model and the RDG model may be applicable for both solidification and liquation cracking. The presented methodology can be used to investigate any material combination and its susceptibility to hot cracking.
激光粉末床熔融金属可加工材料的种类仍然有限。特别是,用PBF-LB/M加工高强铝合金时,很难不产生热裂纹。原位合金化是一种很有前途的改变合金物理性能以降低其热裂敏感性的方法。采用PBF-LB/M对7075铝合金及其含硅量分别为2、4、6 wt.%的共混物进行了加工。研究了Rappaz-Drezet-Gremaud (RDG)模型和Kou模型对7075铝合金及三种粉末共混物热裂行为的预测能力。采用光滑颗粒流体力学(SPH)方法获得了RDG模型的热输入数据。在实验和模拟中观察到,随着Si含量的增加,热裂敏感性明显降低。对7075铝合金热裂机理类型的详细分析提供了液化开裂存在的几个迹象。Kou模型和RDG模型可以同时适用于凝固开裂和液化开裂。所提出的方法可用于研究任何材料组合及其对热裂的敏感性。
{"title":"Experimental and numerical investigations of the hot cracking susceptibility during the powder bed fusion of AA 7075 using a laser beam","authors":"Andreas Wimmer, Hannes Panzer, Christopher Zoeller, Stefan Adami, Nikolaus A. Adams, Michael F. Zaeh","doi":"10.1007/s40964-023-00523-7","DOIUrl":"https://doi.org/10.1007/s40964-023-00523-7","url":null,"abstract":"Abstract The variety of processable materials for the powder bed fusion of metals using a laser beam (PBF-LB/M) is still limited. In particular, high-strength aluminum alloys are difficult to process with PBF-LB/M without the occurrence of hot cracks. In situ alloying is a promising method to modify the physical properties of an alloy to reduce its hot cracking susceptibility. In this work, the aluminum alloy 7075 and blends with 2 wt.%, 4 wt.%, and 6 wt.% of Si were processed via PBF-LB/M. The Rappaz–Drezet–Gremaud (RDG) model and the Kou model were investigated regarding their capability of predicting the hot cracking behavior for the aluminum alloy 7075 and the three powder blends. The smoothed-particle hydrodynamics (SPH) method was used to gain the thermal input data for the RDG model. A clear tendency of a reduced hot cracking susceptibility with an increasing amount of Si was observed in the experiments and in the simulations. A detailed analysis of the type of the hot cracking mechanism in the aluminum alloy 7075 provided several indications of the presence of liquation cracking. The Kou model and the RDG model may be applicable for both solidification and liquation cracking. The presented methodology can be used to investigate any material combination and its susceptibility to hot cracking.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Additive Manufacturing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1