Nathanaël Rakotoarinoro, Yan F K Dyck, Simon K Krebs, Miriam-Kousso Assi, Maria K Parr, Marlitt Stech
Abstract Background: Antibody-drug conjugates are cancer therapeutics that combine specificity and toxicity. A highly cytotoxic drug is covalently attached to an antibody that directs it to cancer cells. The conjugation of the drug-linker to the antibody is a key point in research and development as well as in industrial production. The consensus is to conjugate the drug to a surface-exposed part of the antibody to ensure maximum conjugation efficiency. However, the hydrophobic nature of the majority of drugs used in antibody-drug conjugates leads to an increased hydrophobicity of the generated antibody-drug conjugates, resulting in higher liver clearance and decreased stability. Methods: In contrast, we describe a non-conventional approach in which the drug is conjugated in a buried part of the antibody. To achieve this, a ready-to-click antibody design was created in which an azido-based non-canonical amino acid is introduced within the Fab cavity during antibody synthesis using nonsense suppression technology. The Fab cavity was preferred over the Fc cavity to circumvent issues related to cleavage of the IgG1 lower hinge region in the tumor microenvironment. Results: This antibody design significantly increased the hydrophilicity of the generated antibody-drug conjugates compared to the current best-in-class designs based on non-canonical amino acids, while conjugation efficiency and functionality were maintained. The robustness of this native shielding effect and the versatility of this approach were also investigated. Conclusions: This pioneer design may become a starting point for the improvement of antibody-drug conjugates and an option to consider for protecting drugs and linkers from unspecific interactions. Statement of significance: This work describes for the first time to our knowledge a ready-to-click antibody design based on non-canonical amino acids enabling the generation of highly hydrophilic antibody-drug conjugates and highlights the importance of the conjugation site selection as well as the drug-linker design for the generation of less hydrophobic antibody-drug conjugates.
{"title":"A disruptive clickable antibody design for the generation of antibody-drug conjugates","authors":"Nathanaël Rakotoarinoro, Yan F K Dyck, Simon K Krebs, Miriam-Kousso Assi, Maria K Parr, Marlitt Stech","doi":"10.1093/abt/tbad023","DOIUrl":"https://doi.org/10.1093/abt/tbad023","url":null,"abstract":"Abstract Background: Antibody-drug conjugates are cancer therapeutics that combine specificity and toxicity. A highly cytotoxic drug is covalently attached to an antibody that directs it to cancer cells. The conjugation of the drug-linker to the antibody is a key point in research and development as well as in industrial production. The consensus is to conjugate the drug to a surface-exposed part of the antibody to ensure maximum conjugation efficiency. However, the hydrophobic nature of the majority of drugs used in antibody-drug conjugates leads to an increased hydrophobicity of the generated antibody-drug conjugates, resulting in higher liver clearance and decreased stability. Methods: In contrast, we describe a non-conventional approach in which the drug is conjugated in a buried part of the antibody. To achieve this, a ready-to-click antibody design was created in which an azido-based non-canonical amino acid is introduced within the Fab cavity during antibody synthesis using nonsense suppression technology. The Fab cavity was preferred over the Fc cavity to circumvent issues related to cleavage of the IgG1 lower hinge region in the tumor microenvironment. Results: This antibody design significantly increased the hydrophilicity of the generated antibody-drug conjugates compared to the current best-in-class designs based on non-canonical amino acids, while conjugation efficiency and functionality were maintained. The robustness of this native shielding effect and the versatility of this approach were also investigated. Conclusions: This pioneer design may become a starting point for the improvement of antibody-drug conjugates and an option to consider for protecting drugs and linkers from unspecific interactions. Statement of significance: This work describes for the first time to our knowledge a ready-to-click antibody design based on non-canonical amino acids enabling the generation of highly hydrophilic antibody-drug conjugates and highlights the importance of the conjugation site selection as well as the drug-linker design for the generation of less hydrophobic antibody-drug conjugates.","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"15 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136377266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dora Buzas, H Adrian Bunzel, Oskar Staufer, Emily J Milodowski, Grace L Edmunds, Joshua C Bufton, Beatriz V Vidana Mateo, Sathish K N Yadav, Kapil Gupta, Charlotte Fletcher, Maia Kavanagh Williamson, Alexandra Harrison, Ufuk Borucu, Julien Capin, Ore Francis, Georgia Balchin, Sophie Hall, Mirella Vivoli Vega, Fabien Durbesson, Srikanth Lingappa, Renaud Vincentelli, Joe Roe, Linda Wooldridge, Rachel Burt, J L Ross Anderson, Adrian J Mulholland, Jonathan Hare, Mick Bailey, Andrew D Davidson, Adam Finn, David Morgan, Jamie Mann, Joachim Spatz, Frederic Garzoni, Christiane Schaffitzel, Imre Berger
Abstract Background Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.
{"title":"<i>In vitro</i> generated antibodies guide thermostable ADDomer nanoparticle design for nasal vaccination and passive immunization against SARS-CoV-2","authors":"Dora Buzas, H Adrian Bunzel, Oskar Staufer, Emily J Milodowski, Grace L Edmunds, Joshua C Bufton, Beatriz V Vidana Mateo, Sathish K N Yadav, Kapil Gupta, Charlotte Fletcher, Maia Kavanagh Williamson, Alexandra Harrison, Ufuk Borucu, Julien Capin, Ore Francis, Georgia Balchin, Sophie Hall, Mirella Vivoli Vega, Fabien Durbesson, Srikanth Lingappa, Renaud Vincentelli, Joe Roe, Linda Wooldridge, Rachel Burt, J L Ross Anderson, Adrian J Mulholland, Jonathan Hare, Mick Bailey, Andrew D Davidson, Adam Finn, David Morgan, Jamie Mann, Joachim Spatz, Frederic Garzoni, Christiane Schaffitzel, Imre Berger","doi":"10.1093/abt/tbad024","DOIUrl":"https://doi.org/10.1093/abt/tbad024","url":null,"abstract":"Abstract Background Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135993808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Arginine (Arg) is a natural amino acid with an acceptable safety profile and a unique chemical structure. Arg and its salts are highly effective in enhancing protein refolding and solubilization, suppressing protein–protein interaction and aggregation and reducing viscosity of high concentration protein formulations. Arg and its salts have been used in research and 20 approved protein injectables. This review summarizes the effects of Arg as an excipient in therapeutic protein formulations with the focus on its physicochemical properties, safety, applications in approved protein products, beneficial and detrimental effects in liquid and lyophilized protein formulations when combined with different counterions and mechanism on protein stabilization and destabilization. The decade literature review indicates that the benefits of Arg overweigh its risks when it is used appropriately. It is recommended to add Arg along with glutamate as a counterion to high concentration protein formulations on top of sugars or polyols to counterbalance the negative effects of Arg hydrochloride. The use of Arg as a viscosity reducer and protein stabilizer in high concentration formulations will be the inevitable future trend of the biopharmaceutical industry for subcutaneous administration.
{"title":"Effects of Arginine in therapeutic protein formulations: a decade review and perspectives","authors":"Steven Ren","doi":"10.1093/abt/tbad022","DOIUrl":"https://doi.org/10.1093/abt/tbad022","url":null,"abstract":"Abstract Arginine (Arg) is a natural amino acid with an acceptable safety profile and a unique chemical structure. Arg and its salts are highly effective in enhancing protein refolding and solubilization, suppressing protein–protein interaction and aggregation and reducing viscosity of high concentration protein formulations. Arg and its salts have been used in research and 20 approved protein injectables. This review summarizes the effects of Arg as an excipient in therapeutic protein formulations with the focus on its physicochemical properties, safety, applications in approved protein products, beneficial and detrimental effects in liquid and lyophilized protein formulations when combined with different counterions and mechanism on protein stabilization and destabilization. The decade literature review indicates that the benefits of Arg overweigh its risks when it is used appropriately. It is recommended to add Arg along with glutamate as a counterion to high concentration protein formulations on top of sugars or polyols to counterbalance the negative effects of Arg hydrochloride. The use of Arg as a viscosity reducer and protein stabilizer in high concentration formulations will be the inevitable future trend of the biopharmaceutical industry for subcutaneous administration.","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136015715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rashmi Srivastava, Alireza Labani-Motlagh, Apeng Chen, Jose Alejandro Bohorquez, Bin Qin, Meghana Dodda, Fan Yang, Danish Ansari, Sahil Patel, Honglong Ji, Scott Trasti, Yapeng Chao, Yash Patel, Han Zou, Baoli Hu, Guohua Yi
Abstract Glioblastoma (GBM) is the most common and lethal primary brain tumor. The development of alternative humanized mouse models with fully functional human immune cells will potentially accelerate the progress of GBM immunotherapy. We successfully generated humanized DRAG (NOD.Rag1KO.IL2RγcKO) mouse model by transplantation of human DR4+ hematopoietic stem cells (hHSCs), and effectively grafted GBM patient-derived tumorsphere cells to form xenografted tumors intracranially. The engrafted tumors recapitulated the pathological features and the immune cell composition of human GBM. Administration of anti-human PD-1 antibodies in these tumor-bearing humanized DRAG mice decreased the major tumor-infiltrating immunosuppressive cell populations, including CD4+PD-1+ and CD8+PD-1+ T cells, CD11b+CD14+HLA-DR+ macrophages, CD11b+CD14+HLA-DR−CD15− and CD11b+CD14−CD15+ myeloid-derived suppressor cells, indicating the humanized DRAG mice as a useful model to test the efficacy of GBM immunotherapy. Taken together, these results suggest that the humanized DRAG mouse model is a reliable preclinical platform for studying brain cancer immunotherapy and beyond.
{"title":"Development of a human glioblastoma model using humanized DRAG mice for immunotherapy","authors":"Rashmi Srivastava, Alireza Labani-Motlagh, Apeng Chen, Jose Alejandro Bohorquez, Bin Qin, Meghana Dodda, Fan Yang, Danish Ansari, Sahil Patel, Honglong Ji, Scott Trasti, Yapeng Chao, Yash Patel, Han Zou, Baoli Hu, Guohua Yi","doi":"10.1093/abt/tbad021","DOIUrl":"https://doi.org/10.1093/abt/tbad021","url":null,"abstract":"Abstract Glioblastoma (GBM) is the most common and lethal primary brain tumor. The development of alternative humanized mouse models with fully functional human immune cells will potentially accelerate the progress of GBM immunotherapy. We successfully generated humanized DRAG (NOD.Rag1KO.IL2RγcKO) mouse model by transplantation of human DR4+ hematopoietic stem cells (hHSCs), and effectively grafted GBM patient-derived tumorsphere cells to form xenografted tumors intracranially. The engrafted tumors recapitulated the pathological features and the immune cell composition of human GBM. Administration of anti-human PD-1 antibodies in these tumor-bearing humanized DRAG mice decreased the major tumor-infiltrating immunosuppressive cell populations, including CD4+PD-1+ and CD8+PD-1+ T cells, CD11b+CD14+HLA-DR+ macrophages, CD11b+CD14+HLA-DR−CD15− and CD11b+CD14−CD15+ myeloid-derived suppressor cells, indicating the humanized DRAG mice as a useful model to test the efficacy of GBM immunotherapy. Taken together, these results suggest that the humanized DRAG mouse model is a reliable preclinical platform for studying brain cancer immunotherapy and beyond.","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135548761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12eCollection Date: 2023-10-01DOI: 10.1093/abt/tbad019
Richard Smith
Chimeric antigen receptor (CAR)-T cells have revolutionized the immunotherapy of B-cell malignancies and are poised to expand the range of their impact across a broad range of oncology and non-oncology indications. Critical to the success of a given CAR is the choice of binding domain, as this is the key driver for specificity and plays an important role (along with the rest of the CAR structure) in determining efficacy, potency and durability of the cell therapy. While antibodies have proven to be effective sources of CAR binding domains, it has become apparent that the desired attributes for a CAR binding domain do differ from those of a recombinant antibody. This review will address key factors that need to be considered in choosing the optimal binding domain for a given CAR and how binder properties influence and are influenced by the rest of the CAR.
{"title":"Bringing cell therapy to tumors: considerations for optimal CAR binder design.","authors":"Richard Smith","doi":"10.1093/abt/tbad019","DOIUrl":"10.1093/abt/tbad019","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR)-T cells have revolutionized the immunotherapy of B-cell malignancies and are poised to expand the range of their impact across a broad range of oncology and non-oncology indications. Critical to the success of a given CAR is the choice of binding domain, as this is the key driver for specificity and plays an important role (along with the rest of the CAR structure) in determining efficacy, potency and durability of the cell therapy. While antibodies have proven to be effective sources of CAR binding domains, it has become apparent that the desired attributes for a CAR binding domain do differ from those of a recombinant antibody. This review will address key factors that need to be considered in choosing the optimal binding domain for a given CAR and how binder properties influence and are influenced by the rest of the CAR.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"6 4","pages":"225-239"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41239487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study evaluates the anti-tumor mechanism of IMM47, a humanized anti-CD24 mAb. Biolayer interferometry, ELISA and flow cytometry methods were used to measure the IMM47 binding, affinity, ADCC, ADCP, ADCT and CDC activities. In vivo therapeutical efficacy was measured in transplanted mouse models. IMM47 significantly binds granulocytes but not human erythrocytes and blocks CD24's ability to bind to Siglec-10. IMM47 has strong ADCC, ADCT and ADCP activity against REH cells. IMM47's in vivo pharmacodynamics showed that IMM47 has strong anti-tumor effects in human siglec-10 transgenic mouse models with a memory immune response. IMM47 also has powerful synergistic therapeutic efficacy when combined with Tislelizumab, Opdivo and Keytruda, by blocking CD24/Siglec-10 interaction through macrophage antigen presentation with strong ADCC, ADCP, ADCT and CDC activities and with a safe profile. IMM47 binding to CD24 is independent of N-glycosylation modification of the extracellular domain.
{"title":"IMM47, a humanized monoclonal antibody that targets CD24, exhibits exceptional anti-tumor efficacy by blocking the CD24/Siglec-10 interaction and can be used as monotherapy or in combination with anti-PD1 antibodies for cancer immunotherapy.","authors":"Song Li, Dianze Chen, Huiqin Guo, Yanan Yang, Dandan Liu, Chunmei Yang, Xing Bai, Wei Zhang, Li Zhang, Gui Zhao, Xiaoping Tu, Liang Peng, Sijin Liu, Yongping Song, Zhongxing Jiang, Ruliang Zhang, Jifeng Yu, Wenzhi Tian","doi":"10.1093/abt/tbad020","DOIUrl":"10.1093/abt/tbad020","url":null,"abstract":"<p><p>This study evaluates the anti-tumor mechanism of IMM47, a humanized anti-CD24 mAb. Biolayer interferometry, ELISA and flow cytometry methods were used to measure the IMM47 binding, affinity, ADCC, ADCP, ADCT and CDC activities. <i>In vivo</i> therapeutical efficacy was measured in transplanted mouse models. IMM47 significantly binds granulocytes but not human erythrocytes and blocks CD24's ability to bind to Siglec-10. IMM47 has strong ADCC, ADCT and ADCP activity against REH cells. IMM47's <i>in vivo</i> pharmacodynamics showed that IMM47 has strong anti-tumor effects in human siglec-10 transgenic mouse models with a memory immune response. IMM47 also has powerful synergistic therapeutic efficacy when combined with Tislelizumab, Opdivo and Keytruda, by blocking CD24/Siglec-10 interaction through macrophage antigen presentation with strong ADCC, ADCP, ADCT and CDC activities and with a safe profile. IMM47 binding to CD24 is independent of N-glycosylation modification of the extracellular domain.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"6 4","pages":"240-252"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41239488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-04eCollection Date: 2023-07-01DOI: 10.1093/abt/tbad017
Zhouyi Wu, Gangling Xu, Wu He, Chuanfei Yu, Wanqiu Huang, Shirui Zheng, Dian Kang, Michael H Xie, Xingjun Cao, Lan Wang, Kaikun Wei
High-producing cell line could improve the affordability and availability of biotherapeutic products. A post-approval production cell line change, low-titer CHO-K1S to high-titer CHO-K1SV GS-KO, was performed for a China marketed bevacizumab biosimilar IBI305. Currently, there is no regulatory guideline specifically addressing the requirements for comparability study of post-approval cell line change, which is generally regarded as the most complex process change for biological products. Following the quality by design principle and risk assessment, an extensive analytical characterization and three-way comparison was performed by using a panel of advanced analytical methods. Orthogonal and state-of-the-art techniques including nuclear magnetic resonance and high-resolution mass spectrometry were applied to mitigate the potential uncertainties of higher-order structures and to exclude any new sequence variants, scrambled disulfide bonds, glycan moiety and undesired process-related impurities such as host cell proteins. Nonclinical and clinical pharmacokinetics (PK) studies were conducted subsequently to further confirm the comparability. The results demonstrated that the post-change IBI305 was analytically comparable to the pre-change one and similar to the reference product in physicochemical and biological properties, as well as the degradation behaviors in accelerated stability and forced degradation studies. The comparability was further confirmed by comparable PK, pharmacodynamics, toxicological and immunogenicity profiles of nonclinical and clinical studies. The comparability strategy presented here might extend to cell line changes of other post-approval biological products, and particularly set a precedent in China for post-approval cell line change of commercialized biosimilars.
{"title":"Comparability strategy and demonstration for post-approval production cell line change of a bevacizumab biosimilar IBI305.","authors":"Zhouyi Wu, Gangling Xu, Wu He, Chuanfei Yu, Wanqiu Huang, Shirui Zheng, Dian Kang, Michael H Xie, Xingjun Cao, Lan Wang, Kaikun Wei","doi":"10.1093/abt/tbad017","DOIUrl":"10.1093/abt/tbad017","url":null,"abstract":"<p><p>High-producing cell line could improve the affordability and availability of biotherapeutic products. A post-approval production cell line change, low-titer CHO-K1S to high-titer CHO-K1SV GS-KO, was performed for a China marketed bevacizumab biosimilar IBI305. Currently, there is no regulatory guideline specifically addressing the requirements for comparability study of post-approval cell line change, which is generally regarded as the most complex process change for biological products. Following the quality by design principle and risk assessment, an extensive analytical characterization and three-way comparison was performed by using a panel of advanced analytical methods. Orthogonal and state-of-the-art techniques including nuclear magnetic resonance and high-resolution mass spectrometry were applied to mitigate the potential uncertainties of higher-order structures and to exclude any new sequence variants, scrambled disulfide bonds, glycan moiety and undesired process-related impurities such as host cell proteins. Nonclinical and clinical pharmacokinetics (PK) studies were conducted subsequently to further confirm the comparability. The results demonstrated that the post-change IBI305 was analytically comparable to the pre-change one and similar to the reference product in physicochemical and biological properties, as well as the degradation behaviors in accelerated stability and forced degradation studies. The comparability was further confirmed by comparable PK, pharmacodynamics, toxicological and immunogenicity profiles of nonclinical and clinical studies. The comparability strategy presented here might extend to cell line changes of other post-approval biological products, and particularly set a precedent in China for post-approval cell line change of commercialized biosimilars.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":"6 3","pages":"194-210"},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/38/cd/tbad017.PMC10481892.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10186515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Li, Ruixue Wang, Tianyuzhou Liang, Hua Ren, Chaelee Park, Chin-Hsien Tai, Weiming Ni, Jing Zhou, S. Mackay, Elijah Edmondson, Javed Khan, B. S. Croix, Mitchell Ho
Abstract Background and significance Chimeric antigen receptor (CAR)-T cell therapy shows promising potency for treating patients with hematological malignancies. However, follow-up data indicate that only 30% to 50% of these patients experience long-term disease control. In solid tumors, the B7-H3 transmembrane protein is an emerging target that harbors in its ectodomain two distinct epitope motifs - IgC and IgV. Here, we developed nanobody-based CAR-T cell strategy targeting B7-H3 and investigated its anti-tumor efficacy in xenograft mouse models. Methods We isolated anti-B7-H3 VHHs from our large dromedary camel VHH nanobody libraries with great diversity (> 1012 total) by phage display technology. The binding of isolated VHHs was validated by ELISA, flow cytometry, and Octet. A B7-H3 peptide library was synthesized to predict the epitope of select VHHs. Anti-tumor effect of B7-H3 CAR-T cells was determined via cell luciferase-based cell killing assay as well as xenograft mouse models. Two tumor models, human neuroblastoma and pancreatic adenocarcinoma, were used in the present study. Single-cell transcriptome RNA sequencing coupled with single T-cell functional proteomics analysis was used to analyze the functionality of nanobody-based B7-H3 CAR-T cells. Results We analyzed the isoforms of B7-H3 at the RNA and protein levels and validated that only 4IgB7-H3 is a therapeutic target as the dominant isoform in tumors. Targeting 4Ig isoform, we obtained a panel of high-affinity nanobodies cross-reactive to human, mouse, rat, and monkey. Furthermore, we demonstrated that CAR-T cells based on the nanobodies had potent antitumor activity against tumors with rigorous T cell signaling and significant tumor infiltration. Mechanistically, we uncovered the top-upregulated genes that might be critical for the persistence of polyfunctional CAR-T cells in the tumor microenvironment. Conclusions Our results provide a novel nanobody-based B7-H3 CAR-T product for use in solid tumor therapy.
{"title":"CAMEL NANOBODY-BASED B7-H3 CAR-T CELLS WITH HIGH EFFICACY AGAINST SOLID TUMORS","authors":"Dan Li, Ruixue Wang, Tianyuzhou Liang, Hua Ren, Chaelee Park, Chin-Hsien Tai, Weiming Ni, Jing Zhou, S. Mackay, Elijah Edmondson, Javed Khan, B. S. Croix, Mitchell Ho","doi":"10.1093/abt/tbad014.005","DOIUrl":"https://doi.org/10.1093/abt/tbad014.005","url":null,"abstract":"Abstract Background and significance Chimeric antigen receptor (CAR)-T cell therapy shows promising potency for treating patients with hematological malignancies. However, follow-up data indicate that only 30% to 50% of these patients experience long-term disease control. In solid tumors, the B7-H3 transmembrane protein is an emerging target that harbors in its ectodomain two distinct epitope motifs - IgC and IgV. Here, we developed nanobody-based CAR-T cell strategy targeting B7-H3 and investigated its anti-tumor efficacy in xenograft mouse models. Methods We isolated anti-B7-H3 VHHs from our large dromedary camel VHH nanobody libraries with great diversity (> 1012 total) by phage display technology. The binding of isolated VHHs was validated by ELISA, flow cytometry, and Octet. A B7-H3 peptide library was synthesized to predict the epitope of select VHHs. Anti-tumor effect of B7-H3 CAR-T cells was determined via cell luciferase-based cell killing assay as well as xenograft mouse models. Two tumor models, human neuroblastoma and pancreatic adenocarcinoma, were used in the present study. Single-cell transcriptome RNA sequencing coupled with single T-cell functional proteomics analysis was used to analyze the functionality of nanobody-based B7-H3 CAR-T cells. Results We analyzed the isoforms of B7-H3 at the RNA and protein levels and validated that only 4IgB7-H3 is a therapeutic target as the dominant isoform in tumors. Targeting 4Ig isoform, we obtained a panel of high-affinity nanobodies cross-reactive to human, mouse, rat, and monkey. Furthermore, we demonstrated that CAR-T cells based on the nanobodies had potent antitumor activity against tumors with rigorous T cell signaling and significant tumor infiltration. Mechanistically, we uncovered the top-upregulated genes that might be critical for the persistence of polyfunctional CAR-T cells in the tumor microenvironment. Conclusions Our results provide a novel nanobody-based B7-H3 CAR-T product for use in solid tumor therapy.","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41630739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Proteins are known as the building blocks of life which play many critical roles in the body. In early stage drug discovery, numerous μg to mg scale high quality proteins need to be produced for in vitro functional studies and therapeutic evaluation, including antigens, monoclonal antibodies (mAb), bispecific antibodies (bsAbs) as well as other Fc fusion proteins. High-throughput production (HTP) of various proteins with high quality in very short time is a big challenge in industry. Here we present how WuXi Biologics has created a powerful ultra HTP protein production platform (termed as “Ultra 96”) that can automatically produce proteins within 3 weeks with one step purification at 1~3mL expression scale by using 96 and 24 well DWP. High titer of expression, high quality of products, short timeline as well as low cost make “Ultra 96” a robust platform which can empower our clients and dramatically accelerate their early stage drug discovery projects.
{"title":"ESTABLISHMENT OF AN ULTRA HIGH-THROUGHPUT PROTEIN PRODUCTION PLATFORM (ULTRA 96) FOR EARLY STAGE IN VITRO STUDIES","authors":"Kai Jiang, Huishuai Li, Chuanlong Tang, Dawei Zhang, Xuejian Zhang, Ying Zhang, Zhengyang Zhao, Junqing Zhou, Mengjie Lu, Yongsheng Xiao, Zhumei Feng, Jiansheng Wu","doi":"10.1093/abt/tbad014.017","DOIUrl":"https://doi.org/10.1093/abt/tbad014.017","url":null,"abstract":"Abstract Proteins are known as the building blocks of life which play many critical roles in the body. In early stage drug discovery, numerous μg to mg scale high quality proteins need to be produced for in vitro functional studies and therapeutic evaluation, including antigens, monoclonal antibodies (mAb), bispecific antibodies (bsAbs) as well as other Fc fusion proteins. High-throughput production (HTP) of various proteins with high quality in very short time is a big challenge in industry. Here we present how WuXi Biologics has created a powerful ultra HTP protein production platform (termed as “Ultra 96”) that can automatically produce proteins within 3 weeks with one step purification at 1~3mL expression scale by using 96 and 24 well DWP. High titer of expression, high quality of products, short timeline as well as low cost make “Ultra 96” a robust platform which can empower our clients and dramatically accelerate their early stage drug discovery projects.","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43240558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
You Li, Jianwei Zhang, Ruiqin Wang, Xueying Yin, Susan Liu, Jufang Lin, Shaojing Hu, M. Cai
Abstract Background and significance Fibroblast growth factor receptor 2b (FGFR2b), a splice isoform of FGFR2, is found to overexpress across multiple cancers types and promotes dysregulated tyrosine kinase activation, resulting in tumor cell proliferation and unchecked malignancy. Cohort studies reveal FGFR2b overexpression and/or amplification in Gastric cancer (~30.2%), squamous non-small cell lung cancer (~20.8%), and endometrial carcinoma (~40%). About 80–85% patients who have advanced HER2-negative gastro-esophageal cancer undergoes approximately 12-14 months of median overall survival (mOS). Thus, there is an urgent need for novel and effective molecular targeted agents. With the recent advancement of mechanistic studies, however, FGFR2b is becoming the optimal target of multiple modalities such as mAb, bispecifics, or antibody-drug conjugate. Bemarituzumab, a FGFR2b blocking antibody, developed by Five Prime clinically demonstrates the safety of FGFR2b target and exhibits preliminary efficacy in advanced GE/GEJ adenocarcinoma patients with overexpression of FGFR2 in at least 5% or 10% of tumor cells. 3H Pharmaceuticals developed a FGFR2b-specific mAb, 3H-3000, of high-affinity, differentiated epitope and enhanced ADCC effect for FGFR2b-overexpressing gastric cancer or other FGFR2b-associated cancer types. In the meantime, we will also explore the versatility of this mAb in other format and in the combination with small molecules that will bring about a wider therapeutic spectrum. Method and Result 3H-3000 is a humanized IgG1kappa antibody with a single digit nM affinity for FGFR2b and no binding to other FGFR2 isoforms. 3H-3000 shows potent proliferation-inhibitive effects on FGFR2b-overexpressing human tumor cells. In gastric cancer cell line SNU16, 3H-3000 can fully inhibit FGF7-induced phosphorylation of FGFR2b and SNU16 proliferation in vitro. On top of signaling blocking, we strongly believe efficacy of antibody-dependent cell cytotoxicity (ADCC) is another viable mechanism for growth factor-targeting therapy. Therefore, 3H-3000 was further engineered with a 20-fold ADCC enhancement which is validated through a CD16-F158 variant-based reporter system. In FGFR2b-overexpressing human gastric cancer SNU16 or OCUM-2M xenograft model, 3H-3000 was shown to inhibit tumor growth and even induce regression, which is rather unexpected given the relative low expression of FGFR2b on SNU16 and none of the competitors exhibit similar phenomenon. With potent efficacy of tumor inhibition and killing, and excellent biophysical characteristics and developability of 3H-3000, we expect to push the molecule to clinical development in the middle of 2024. Conclusion 3H-3000 is a potent FGFR2b blocker with well-defined ADCC efficacy enhancement. It demonstrates strong blocking activity of FGFR2 signaling, strikingly enhanced ADCC activity in vitro and potent efficacy of tumor inhibition in vivo. These data strongly support its clinical development in FGFR2b
{"title":"3H-3000, AN FGFR2B-SPECIFIC MONOCLONAL ANTIBODY, SHOWS SUPERIOR TUMOR KILLING IN VIVO","authors":"You Li, Jianwei Zhang, Ruiqin Wang, Xueying Yin, Susan Liu, Jufang Lin, Shaojing Hu, M. Cai","doi":"10.1093/abt/tbad014.016","DOIUrl":"https://doi.org/10.1093/abt/tbad014.016","url":null,"abstract":"Abstract Background and significance Fibroblast growth factor receptor 2b (FGFR2b), a splice isoform of FGFR2, is found to overexpress across multiple cancers types and promotes dysregulated tyrosine kinase activation, resulting in tumor cell proliferation and unchecked malignancy. Cohort studies reveal FGFR2b overexpression and/or amplification in Gastric cancer (~30.2%), squamous non-small cell lung cancer (~20.8%), and endometrial carcinoma (~40%). About 80–85% patients who have advanced HER2-negative gastro-esophageal cancer undergoes approximately 12-14 months of median overall survival (mOS). Thus, there is an urgent need for novel and effective molecular targeted agents. With the recent advancement of mechanistic studies, however, FGFR2b is becoming the optimal target of multiple modalities such as mAb, bispecifics, or antibody-drug conjugate. Bemarituzumab, a FGFR2b blocking antibody, developed by Five Prime clinically demonstrates the safety of FGFR2b target and exhibits preliminary efficacy in advanced GE/GEJ adenocarcinoma patients with overexpression of FGFR2 in at least 5% or 10% of tumor cells. 3H Pharmaceuticals developed a FGFR2b-specific mAb, 3H-3000, of high-affinity, differentiated epitope and enhanced ADCC effect for FGFR2b-overexpressing gastric cancer or other FGFR2b-associated cancer types. In the meantime, we will also explore the versatility of this mAb in other format and in the combination with small molecules that will bring about a wider therapeutic spectrum. Method and Result 3H-3000 is a humanized IgG1kappa antibody with a single digit nM affinity for FGFR2b and no binding to other FGFR2 isoforms. 3H-3000 shows potent proliferation-inhibitive effects on FGFR2b-overexpressing human tumor cells. In gastric cancer cell line SNU16, 3H-3000 can fully inhibit FGF7-induced phosphorylation of FGFR2b and SNU16 proliferation in vitro. On top of signaling blocking, we strongly believe efficacy of antibody-dependent cell cytotoxicity (ADCC) is another viable mechanism for growth factor-targeting therapy. Therefore, 3H-3000 was further engineered with a 20-fold ADCC enhancement which is validated through a CD16-F158 variant-based reporter system. In FGFR2b-overexpressing human gastric cancer SNU16 or OCUM-2M xenograft model, 3H-3000 was shown to inhibit tumor growth and even induce regression, which is rather unexpected given the relative low expression of FGFR2b on SNU16 and none of the competitors exhibit similar phenomenon. With potent efficacy of tumor inhibition and killing, and excellent biophysical characteristics and developability of 3H-3000, we expect to push the molecule to clinical development in the middle of 2024. Conclusion 3H-3000 is a potent FGFR2b blocker with well-defined ADCC efficacy enhancement. It demonstrates strong blocking activity of FGFR2 signaling, strikingly enhanced ADCC activity in vitro and potent efficacy of tumor inhibition in vivo. These data strongly support its clinical development in FGFR2b","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45865901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}