首页 > 最新文献

RAS Techniques and Instruments最新文献

英文 中文
pyhiiextractor: a tool to detect and extract physical properties of H ii regions from integral field spectroscopic data pyhiiextractor:一个从积分场光谱数据中检测和提取H区物理性质的工具
Pub Date : 2022-04-01 DOI: 10.1093/rasti/rzac001
A. Z. Lugo-Aranda, S. F. S'anchez, C. Espinosa-Ponce, C. L'opez-Cob'a, L. Galbany, J. Barrera-Ballesteros, L. Sánchez-Menguiano, J. Anderson
We present a new code named pyhiiextractor, which detects and extracts the main features (positions and radii) of clumpy ionized regions, i.e. candidate H ii regions, using $rm {H},alpha$ emission line images. Our code is optimized to be used on the dataproducts provided by the pipe3d pipeline (or dataproducts with such a format), applied to high-spatial resolution integral field spectroscopy data (like that provided by the AMUSING++ compilation, using muse). The code provides the properties of both the underlying stellar population and the emission lines for each detected H ii candidate. Furthermore, the code delivers a novel estimation of the diffuse ionized gas (DIG) component, independent of its physical properties, which enables a decontamination of the properties of the H ii regions from the DIG. Using simulated data, mimicking the expected observations of spiral galaxies, we characterize pyhiiextractor and its ability to extract the main properties of the H ii regions (and the DIG), including the line fluxes, ratios, and equivalent widths. Finally, we compare our code with other such tools adopted in the literature, which have been developed or used for similar purposes: pyhiiexplorer, sourceextractor, hiiphot, and astrodendro. We conclude that pyhiiextractor exceeds the performance of previous tools in aspects such as the number of recovered regions and the distribution of sizes and fluxes (an improvement that is especially noticeable for the faintest and smallest regions). pyhiiextractor is therefore an optimal tool to detect candidate H ii regions, offering an accurate estimation of their properties and a good decontamination of the DIG component.
我们提出了一个新的代码pyhiiextractor,它使用$rm {H},alpha$发射线图像检测和提取团块电离区域(即候选H ii区域)的主要特征(位置和半径)。我们的代码经过优化,可以在pipe3d管道提供的数据产品(或具有这种格式的数据产品)上使用,应用于高空间分辨率的积分场光谱数据(如使用muse的AMUSING++编译提供的数据)。该代码提供了潜在恒星群和每个探测到的H ii候选恒星的发射线的特性。此外,该代码提供了一种独立于其物理性质的扩散电离气体(DIG)成分的新估计,从而能够从DIG中去除H ii区域的性质。利用模拟数据,模拟螺旋星系的预期观测,我们描述了pyhiiextractor及其提取H ii区域(和DIG)主要特性的能力,包括线通量、比率和等效宽度。最后,我们将我们的代码与文献中采用的其他类似工具进行比较,这些工具已经被开发或用于类似目的:pyhiiexplorer、sourceextractor、hiiphoto和astrodendro。我们得出的结论是,pyhiiextractor在恢复区域的数量以及大小和通量的分布(对于最微弱和最小的区域尤其明显)等方面的性能超过了以前的工具。因此,pyhiiextractor是检测候选H ii区域的最佳工具,提供了对其性质的准确估计和对DIG成分的良好净化。
{"title":"pyhiiextractor: a tool to detect and extract physical properties of H ii regions from integral field spectroscopic data","authors":"A. Z. Lugo-Aranda, S. F. S'anchez, C. Espinosa-Ponce, C. L'opez-Cob'a, L. Galbany, J. Barrera-Ballesteros, L. Sánchez-Menguiano, J. Anderson","doi":"10.1093/rasti/rzac001","DOIUrl":"https://doi.org/10.1093/rasti/rzac001","url":null,"abstract":"\u0000 We present a new code named pyhiiextractor, which detects and extracts the main features (positions and radii) of clumpy ionized regions, i.e. candidate H ii regions, using $rm {H},alpha$ emission line images. Our code is optimized to be used on the dataproducts provided by the pipe3d pipeline (or dataproducts with such a format), applied to high-spatial resolution integral field spectroscopy data (like that provided by the AMUSING++ compilation, using muse). The code provides the properties of both the underlying stellar population and the emission lines for each detected H ii candidate. Furthermore, the code delivers a novel estimation of the diffuse ionized gas (DIG) component, independent of its physical properties, which enables a decontamination of the properties of the H ii regions from the DIG. Using simulated data, mimicking the expected observations of spiral galaxies, we characterize pyhiiextractor and its ability to extract the main properties of the H ii regions (and the DIG), including the line fluxes, ratios, and equivalent widths. Finally, we compare our code with other such tools adopted in the literature, which have been developed or used for similar purposes: pyhiiexplorer, sourceextractor, hiiphot, and astrodendro. We conclude that pyhiiextractor exceeds the performance of previous tools in aspects such as the number of recovered regions and the distribution of sizes and fluxes (an improvement that is especially noticeable for the faintest and smallest regions). pyhiiextractor is therefore an optimal tool to detect candidate H ii regions, offering an accurate estimation of their properties and a good decontamination of the DIG component.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125890256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of stellar contamination on low-resolution transmission spectroscopy: Needs identified by NASA’s Exoplanet Exploration Program Study Analysis Group 21 恒星污染对低分辨率透射光谱的影响:美国宇航局系外行星探索计划研究分析小组21确定的需求
Pub Date : 2022-01-24 DOI: 10.1093/rasti/rzad009
B. Rackham, N. Espinoza, S. Berdyugina, H. Korhonen, R. MacDonald, B. Montet, B. Morris, M. Oshagh, A. Shapiro, Y. Unruh, E. Quintana, R. Zellem, D. Apai, T. Barclay, J. Barstow, G. Bruno, L. Carone, S. Casewell, Heather Cegla, S. Criscuoli, C. Fischer, D. Fournier, M. Giampapa, H. Giles, A. Iyer, G. Kopp, N. Kostogryz, N. Krivova, M. Mallonn, C. McGruder, K. Molaverdikhani, E. Newton, Mayukh Panja, S. Peacock, K. Reardon, R. Roettenbacher, G. Scandariato, S. Solanki, K. Stassun, O. Steiner, K. Stevenson, J. Tregloan-Reed, A. Valio, S. Wedemeyer, L. Welbanks, Jie Yu, M. Alam, J. Davenport, D. Deming, C. Dong, E. Ducrot, C. Fisher, E. Gilbert, V. Kostov, M. López-Morales, M. Line, T. Močnik, S. Mullally, R. Paudel, I. Ribas, J. Valenti
Study Analysis Group 21 (SAG21) of NASA’s Exoplanet Exploration Program Analysis Group (ExoPAG) was organized to study the effect of stellar contamination on space-based transmission spectroscopy, a method for studying exoplanetary atmospheres by measuring the wavelength-dependent radius of a planet as it transits its star. Transmission spectroscopy relies on a precise understanding of the spectrum of the star being occulted. However, stars are not homogeneous, constant light sources but have temporally evolving photospheres and chromospheres with inhomogeneities like spots, faculae, plages, granules, and flares. This SAG brought together an interdisciplinary team of more than 100 scientists, with observers and theorists from the heliophysics, stellar astrophysics, planetary science, and exoplanetary atmosphere research communities, to study the current research needs that can be addressed in this context to make the most of transit studies from current NASA facilities like HST and JWST. The analysis produced 14 findings, which fall into three Science Themes encompassing (1) how the Sun is used as our best laboratory to calibrate our understanding of stellar heterogeneities (‘The Sun as the Stellar Benchmark’), (2) how stars other than the Sun extend our knowledge of heterogeneities (‘Surface Heterogeneities of Other Stars’) and (3) how to incorporate information gathered for the Sun and other stars into transit studies (‘Mapping Stellar Knowledge to Transit Studies’). In this invited review, we largely reproduce the final report of SAG21 as a contribution to the peer-reviewed literature.
美国宇航局系外行星探测计划分析小组(ExoPAG)的第21研究分析小组(SAG21)被组织起来研究恒星污染对天基透射光谱的影响,这是一种通过测量行星凌日时波长依赖半径来研究系外行星大气的方法。透射光谱学依赖于对被遮挡恒星光谱的精确理解。然而,恒星不是均匀的、恒定的光源,而是有随时间演化的光球和色球,它们具有不均匀性,如斑点、光斑、斑块、颗粒和耀斑。这个SAG汇集了一个由100多名科学家组成的跨学科团队,其中包括来自太阳物理学、恒星天体物理学、行星科学和系外行星大气研究界的观察员和理论家,以研究在这种背景下可以解决的当前研究需求,以充分利用HST和JWST等现有NASA设施进行凌日研究。分析产生了14项发现,它们属于三个科学主题,包括(1)如何将太阳用作我们对恒星异质性理解的最佳实验室(“太阳作为恒星基准”),(2)太阳以外的恒星如何扩展我们对异质性的知识(“其他恒星的表面异质性”)以及(3)如何将收集到的太阳和其他恒星的信息纳入凌日研究(“将恒星知识映射到凌日研究”)。在这篇特邀综述中,我们大量复制了SAG21的最终报告,作为对同行评议文献的贡献。
{"title":"The effect of stellar contamination on low-resolution transmission spectroscopy: Needs identified by NASA’s Exoplanet Exploration Program Study Analysis Group 21","authors":"B. Rackham, N. Espinoza, S. Berdyugina, H. Korhonen, R. MacDonald, B. Montet, B. Morris, M. Oshagh, A. Shapiro, Y. Unruh, E. Quintana, R. Zellem, D. Apai, T. Barclay, J. Barstow, G. Bruno, L. Carone, S. Casewell, Heather Cegla, S. Criscuoli, C. Fischer, D. Fournier, M. Giampapa, H. Giles, A. Iyer, G. Kopp, N. Kostogryz, N. Krivova, M. Mallonn, C. McGruder, K. Molaverdikhani, E. Newton, Mayukh Panja, S. Peacock, K. Reardon, R. Roettenbacher, G. Scandariato, S. Solanki, K. Stassun, O. Steiner, K. Stevenson, J. Tregloan-Reed, A. Valio, S. Wedemeyer, L. Welbanks, Jie Yu, M. Alam, J. Davenport, D. Deming, C. Dong, E. Ducrot, C. Fisher, E. Gilbert, V. Kostov, M. López-Morales, M. Line, T. Močnik, S. Mullally, R. Paudel, I. Ribas, J. Valenti","doi":"10.1093/rasti/rzad009","DOIUrl":"https://doi.org/10.1093/rasti/rzad009","url":null,"abstract":"\u0000 Study Analysis Group 21 (SAG21) of NASA’s Exoplanet Exploration Program Analysis Group (ExoPAG) was organized to study the effect of stellar contamination on space-based transmission spectroscopy, a method for studying exoplanetary atmospheres by measuring the wavelength-dependent radius of a planet as it transits its star. Transmission spectroscopy relies on a precise understanding of the spectrum of the star being occulted. However, stars are not homogeneous, constant light sources but have temporally evolving photospheres and chromospheres with inhomogeneities like spots, faculae, plages, granules, and flares. This SAG brought together an interdisciplinary team of more than 100 scientists, with observers and theorists from the heliophysics, stellar astrophysics, planetary science, and exoplanetary atmosphere research communities, to study the current research needs that can be addressed in this context to make the most of transit studies from current NASA facilities like HST and JWST. The analysis produced 14 findings, which fall into three Science Themes encompassing (1) how the Sun is used as our best laboratory to calibrate our understanding of stellar heterogeneities (‘The Sun as the Stellar Benchmark’), (2) how stars other than the Sun extend our knowledge of heterogeneities (‘Surface Heterogeneities of Other Stars’) and (3) how to incorporate information gathered for the Sun and other stars into transit studies (‘Mapping Stellar Knowledge to Transit Studies’). In this invited review, we largely reproduce the final report of SAG21 as a contribution to the peer-reviewed literature.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114556985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
COCOPLOT: COlor COllapsed PLOTting software Using colour to view 3D data as a 2D image COCOPLOT:彩色折叠绘图软件,使用颜色将3D数据视为2D图像
Pub Date : 2021-11-21 DOI: 10.1093/rasti/rzac003
M. Druett, A. G. Pietrow, G. Vissers, C. Robustini, Flavio Calvo
Most modern solar observatories deliver data products formatted as 3D spatio-temporal data cubes, that contain additional, higher dimensions with spectral and/or polarimetric information. This multi-dimensional complexity presents a major challenge when browsing for features of interest in several dimensions simultaneously. We developed the COlor COllapsed PLOTting (COCOPLOT) software as a quick-look and context image software, to convey spectral profile or time evolution from all the spatial pixels (x, y) in a 3D [nx, ny, nλ] or [nx, ny, nt] data cube as a single image, using colour. This can avoid the need to scan through many wavelengths, creating difference and composite images when searching for signals satisfying multiple criteria. Filters are generated for the red, green, and blue channels by selecting values of interest to highlight in each channel, and their weightings. These filters are combined with the data cube over the third dimension axis to produce an nx × ny × 3 cube displayed as one true colour image. Some use cases are presented for data from the Swedish 1-m Solar Telescope and Interface Region Imaging Spectrograph (IRIS), including Hα solar flare data, a comparison with k-means clustering for identifying asymmetries in the Ca ii K line and off-limb coronal rain in IRIS C ii slit-jaw images. These illustrate identification by colour alone using COCOPLOT of locations including line wing or central enhancement, broadening, wing absorption, and sites with intermittent flows or time-persistent features. COCOPLOT is publicly available in both IDL and Python.
大多数现代太阳观测站提供的数据产品格式为三维时空数据立方体,其中包含附加的、更高维度的光谱和/或极化信息。当同时在多个维度上浏览感兴趣的特性时,这种多维复杂性提出了一个主要挑战。我们开发了颜色折叠绘图(COCOPLOT)软件作为快速查看和上下文图像软件,以3D [nx, ny, nλ]或[nx, ny, nt]数据立方体中的所有空间像素(x, y)作为单个图像,使用颜色来传达光谱轮廓或时间演变。这可以避免在搜索满足多个标准的信号时需要扫描多个波长,从而产生差异和合成图像。通过选择要在每个通道中突出显示的感兴趣的值及其权重,为红色、绿色和蓝色通道生成过滤器。这些过滤器与第三维轴上的数据立方体相结合,产生一个nx × ny × 3立方体,显示为一个真彩色图像。介绍了瑞典1米太阳望远镜和界面区域成像光谱仪(IRIS)数据的一些用例,包括Hα太阳耀斑数据,与K均值聚类的比较,以识别Ca ii K线的不对称性和IRIS ii裂隙颚图像中的离翼日冕雨。这些说明了使用COCOPLOT单独通过颜色识别的位置,包括线翼或中心增强,扩大,翼吸收,以及间歇性流动或时间持续特征的位置。COCOPLOT在IDL和Python中都是公开的。
{"title":"COCOPLOT: COlor COllapsed PLOTting software Using colour to view 3D data as a 2D image","authors":"M. Druett, A. G. Pietrow, G. Vissers, C. Robustini, Flavio Calvo","doi":"10.1093/rasti/rzac003","DOIUrl":"https://doi.org/10.1093/rasti/rzac003","url":null,"abstract":"\u0000 Most modern solar observatories deliver data products formatted as 3D spatio-temporal data cubes, that contain additional, higher dimensions with spectral and/or polarimetric information. This multi-dimensional complexity presents a major challenge when browsing for features of interest in several dimensions simultaneously. We developed the COlor COllapsed PLOTting (COCOPLOT) software as a quick-look and context image software, to convey spectral profile or time evolution from all the spatial pixels (x, y) in a 3D [nx, ny, nλ] or [nx, ny, nt] data cube as a single image, using colour. This can avoid the need to scan through many wavelengths, creating difference and composite images when searching for signals satisfying multiple criteria. Filters are generated for the red, green, and blue channels by selecting values of interest to highlight in each channel, and their weightings. These filters are combined with the data cube over the third dimension axis to produce an nx × ny × 3 cube displayed as one true colour image. Some use cases are presented for data from the Swedish 1-m Solar Telescope and Interface Region Imaging Spectrograph (IRIS), including Hα solar flare data, a comparison with k-means clustering for identifying asymmetries in the Ca ii K line and off-limb coronal rain in IRIS C ii slit-jaw images. These illustrate identification by colour alone using COCOPLOT of locations including line wing or central enhancement, broadening, wing absorption, and sites with intermittent flows or time-persistent features. COCOPLOT is publicly available in both IDL and Python.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131443377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Method to observe Jupiter’s radio emissions at high resolution using multiple LOFAR stations: A first case study of the Io-decametric emission using the Irish IE613, French FR606 and German DE604 stations 利用多个LOFAR台站高分辨率观测木星射电发射的方法:利用爱尔兰IE613、法国FR606和德国DE604台站观测木星十分制射电发射的第一个案例研究
Pub Date : 2021-11-18 DOI: 10.1093/rasti/rzac005
C. Louis, C. Jackman, J. Grießmeier, O. Wucknitz, D. J. McKenna, P. Murphy, P. Gallagher, E. Carley, D. '. Fionnag'ain, A. Golden, J. McCauley, P. Callanan, M. Redman, C. Vocks
The Low Frequency Array (LOFAR) is an international radio telescope array, consisting of 38 stations in the Netherlands and 14 international stations spread over Europe. Here we present an observation method to study the jovian decametric radio emissions from several LOFAR stations (here Birr Castle in Ireland, Nançay in France and Postdam in Germany), at high temporal and spectral resolution. This method is based on prediction tools, such as radio emission simulations and probability maps, and data processing. We report an observation of Io-induced decametric emission from June 2021, and a first case study of the substructures that compose the macroscopic emissions (called millisecond bursts). The study of these bursts make it possible to determine the electron populations at the origin of these emissions. We then present several possible future avenues for study based on these observations. The methodology and study perspectives described in this paper can be applied to new observations of jovian radio emissions induced by Io, but also by Ganymede or Europa, or jovian auroral radio emissions.
低频阵列(LOFAR)是一个国际射电望远镜阵列,由荷兰的38个站和分布在欧洲的14个国际站组成。在这里,我们提出了一种观测方法,以高时间和光谱分辨率研究来自几个LOFAR站(爱尔兰的Birr城堡,法国的nanay和德国的Postdam)的木星十分制无线电发射。该方法基于预测工具,如无线电发射模拟和概率图,以及数据处理。我们报告了从2021年6月开始对io诱导的十尺度发射的观测,以及对构成宏观发射(称为毫秒爆发)的子结构的第一个案例研究。对这些爆发的研究使确定这些发射源的电子居群成为可能。然后,我们提出了基于这些观察结果的几个可能的未来研究途径。本文所描述的方法和研究观点可以应用于木卫一引起的木星射电发射的新观测,也可以应用于木卫三或木卫二或木星极光射电发射。
{"title":"Method to observe Jupiter’s radio emissions at high resolution using multiple LOFAR stations: A first case study of the Io-decametric emission using the Irish IE613, French FR606 and German DE604 stations","authors":"C. Louis, C. Jackman, J. Grießmeier, O. Wucknitz, D. J. McKenna, P. Murphy, P. Gallagher, E. Carley, D. '. Fionnag'ain, A. Golden, J. McCauley, P. Callanan, M. Redman, C. Vocks","doi":"10.1093/rasti/rzac005","DOIUrl":"https://doi.org/10.1093/rasti/rzac005","url":null,"abstract":"\u0000 The Low Frequency Array (LOFAR) is an international radio telescope array, consisting of 38 stations in the Netherlands and 14 international stations spread over Europe. Here we present an observation method to study the jovian decametric radio emissions from several LOFAR stations (here Birr Castle in Ireland, Nançay in France and Postdam in Germany), at high temporal and spectral resolution. This method is based on prediction tools, such as radio emission simulations and probability maps, and data processing. We report an observation of Io-induced decametric emission from June 2021, and a first case study of the substructures that compose the macroscopic emissions (called millisecond bursts). The study of these bursts make it possible to determine the electron populations at the origin of these emissions. We then present several possible future avenues for study based on these observations. The methodology and study perspectives described in this paper can be applied to new observations of jovian radio emissions induced by Io, but also by Ganymede or Europa, or jovian auroral radio emissions.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125521536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Posterior sampling for inverse imaging problems on the sphere in seismology and cosmology 地震学和宇宙学中球体逆成像问题的后验抽样
Pub Date : 2021-07-14 DOI: 10.1093/rasti/rzac010
Augustin Marignier, J. McEwen, A. Ferreira, T. Kitching
In this work, we describe a framework for solving spherical inverse imaging problems using posterior sampling for full uncertainty quantification. Inverse imaging problems defined on the sphere arise in many fields, including seismology and cosmology where images are defined on the globe and the cosmic sphere, and are generally high-dimensional and computationally expensive. As a result, sampling the posterior distribution of spherical imaging problems is a challenging task. Our framework leverages a proximal Markov chain Monte Carlo (MCMC) algorithm to efficiently sample the high-dimensional space of spherical images with a sparsity-promoting wavelet prior. We detail the modifications needed for the algorithm to be applied to spherical problems, and give special consideration to the crucial forward modelling step which contains computationally expensive spherical harmonic transforms. By sampling the posterior, our framework allows for full and flexible uncertainty quantification, something which is not possible with other methods based on, for example, convex optimisation. We demonstrate our framework in practice on full-sky cosmological mass-mapping and to the construction of phase velocity maps in global seismic tomography. We find that our approach is potentially useful at moderate resolutions, such as those of interest in seismology. However at high resolutions, such as those required for astrophysical applications, the poor scaling of the complexity of spherical harmonic transforms severely limits our method, which may be resolved with future GPU implementations. A new Python package, pxmcmc, containing the proximal MCMC sampler, measurement operators, wavelet transforms and sparse priors is made publicly available.
在这项工作中,我们描述了一个框架,用于解决球形反成像问题,使用后验采样进行全不确定性量化。在球体上定义的逆成像问题出现在许多领域,包括地震学和宇宙学,其中图像在地球和宇宙球体上定义,并且通常是高维和计算昂贵的。因此,球面成像问题的后验分布采样是一项具有挑战性的任务。我们的框架利用近端马尔可夫链蒙特卡罗(MCMC)算法,利用稀疏性增强小波先验对球面图像的高维空间进行有效采样。我们详细说明了将该算法应用于球面问题所需的修改,并特别考虑了包含计算昂贵的球面调和变换的关键正演建模步骤。通过抽样后验,我们的框架允许充分和灵活的不确定性量化,这是基于其他方法不可能的,例如,凸优化。我们在实践中展示了我们的框架在全天空宇宙质量测绘和全球地震层析成像相速度图的构建。我们发现我们的方法在中等分辨率下是潜在的有用的,比如那些对地震学感兴趣的分辨率。然而,在高分辨率下,如天体物理应用所需的高分辨率下,球面谐波变换复杂性的低缩放严重限制了我们的方法,这可能会在未来的GPU实现中得到解决。一个新的Python包pxmcmc已经公开发布,它包含了近端MCMC采样器、测量运算符、小波变换和稀疏先验。
{"title":"Posterior sampling for inverse imaging problems on the sphere in seismology and cosmology","authors":"Augustin Marignier, J. McEwen, A. Ferreira, T. Kitching","doi":"10.1093/rasti/rzac010","DOIUrl":"https://doi.org/10.1093/rasti/rzac010","url":null,"abstract":"\u0000 In this work, we describe a framework for solving spherical inverse imaging problems using posterior sampling for full uncertainty quantification. Inverse imaging problems defined on the sphere arise in many fields, including seismology and cosmology where images are defined on the globe and the cosmic sphere, and are generally high-dimensional and computationally expensive. As a result, sampling the posterior distribution of spherical imaging problems is a challenging task. Our framework leverages a proximal Markov chain Monte Carlo (MCMC) algorithm to efficiently sample the high-dimensional space of spherical images with a sparsity-promoting wavelet prior. We detail the modifications needed for the algorithm to be applied to spherical problems, and give special consideration to the crucial forward modelling step which contains computationally expensive spherical harmonic transforms. By sampling the posterior, our framework allows for full and flexible uncertainty quantification, something which is not possible with other methods based on, for example, convex optimisation. We demonstrate our framework in practice on full-sky cosmological mass-mapping and to the construction of phase velocity maps in global seismic tomography. We find that our approach is potentially useful at moderate resolutions, such as those of interest in seismology. However at high resolutions, such as those required for astrophysical applications, the poor scaling of the complexity of spherical harmonic transforms severely limits our method, which may be resolved with future GPU implementations. A new Python package, pxmcmc, containing the proximal MCMC sampler, measurement operators, wavelet transforms and sparse priors is made publicly available.","PeriodicalId":367327,"journal":{"name":"RAS Techniques and Instruments","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125916311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
RAS Techniques and Instruments
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1