This paper presents a comprehensive survey of network analysis research on the film industry, aiming to evaluate its emergence as a field of study and identify potential areas for further research. Many foundational network studies made use of the abundant data from the Internet Movie Database (IMDb) to test network methodologies. This survey focuses more specifically on examining research that employs network analysis to evaluate the film industry itself, revealing the social and business relationships involved in film production, distribution, and consumption. The paper adopts a classification approach based on node type and summarises the key contributions in relation to each. The review provides insights into the structure and interconnectedness of the field, highlighting clusters of debates and shedding light on the areas in need of further theoretical and methodological development. In addition, this survey contributes to understanding film industry network analysis and informs researchers interested in network methods within the film industry and related cultural sectors.
Network models are increasingly used to study infectious disease spread. Exponential Random Graph models have a history in this area, with scalable inference methods now available. An alternative approach uses mechanistic network models. Mechanistic network models directly capture individual behaviors, making them suitable for studying sexually transmitted diseases. Combining mechanistic models with Approximate Bayesian Computation allows flexible modeling using domain-specific interaction rules among agents, avoiding network model oversimplifications. These models are ideal for longitudinal settings as they explicitly incorporate network evolution over time. We implemented a discrete-time version of a previously published continuous-time model of evolving contact networks for men who have sex with men and proposed an ABC-based approximate inference scheme for it. As expected, we found that a two-wave longitudinal study design improves the accuracy of inference compared to a cross-sectional design. However, the gains in precision in collecting data twice, up to 18%, depend on the spacing of the two waves and are sensitive to the choice of summary statistics. In addition to methodological developments, our results inform the design of future longitudinal network studies in sexually transmitted diseases, specifically in terms of what data to collect from participants and when to do so.
When an hypothesized peer effect (also termed social influence or contagion) is believed to act between units (e.g., hospitals) above the level at which data is observed (e.g., patients), a network autocorrelation model may be embedded within a hierarchical data structure thereby formulating the peer effect as a dependency between latent variables. In such a situation, a patient's own hospital can be thought of as a mediator between the effects of peer hospitals and their outcome. However, as in mediation analyses, there may be interest in allowing the effects of peer units to directly impact patients of other units. To accommodate these possibilities, we develop two hierarchical network autocorrelation models that allow for direct and indirect peer effects between hospitals when modeling individual outcomes of the patients cared for at the hospitals. A Bayesian approach is used for model estimation while a simulation study assesses the performance of the models and sensitivity of results to different prior distributions. We construct a United States New England region patient-sharing hospital network and apply newly developed Bayesian hierarchical models to study the diffusion of robotic surgery and hospital peer effects in patient outcomes using a cohort of United States Medicare beneficiaries in 2016 and 2017. The comparative fit of models to the data is assessed using Deviance information criteria tailored to hierarchical models that include peer effects as latent variables.
Supplementary information: The online version contains supplementary material available at 10.1007/s41109-024-00627-1.
We present a nation-wide network analysis of non-fatal opioid-involved overdose journeys in the United States. Leveraging a unique proprietary dataset of Emergency Medical Services incidents, we construct a journey-to-overdose geospatial network capturing nearly half a million opioid-involved overdose events spanning 2018-2023. We analyze the structure and sociological profiles of the nodes, which are counties or their equivalents, characterize the distribution of overdose journey lengths, and investigate changes in the journey network between 2018 and 2023. Our findings include that authority and hub nodes identified by the HITS algorithm tend to be located in urban areas and involved in overdose journeys with particularly long geographical distances.

