Pub Date : 2023-10-30DOI: 10.1007/s41109-023-00602-2
Mohammad Saleh Mahdizadeh, Behnam Bahrak, Mohammad Sayad Haghighi
Abstract The fundamental objective of the Lightning Network is to establish a decentralized platform for scaling the Bitcoin network and facilitating high-throughput micropayments. However, this network has gradually deviated from its decentralized topology since its operational inception, and its resources have quickly shifted towards centralization. The evolution of the network and the changes in its topology have been critically reviewed and criticized due to its increasing centralization. This study delves into the network’s topology and the reasons behind its centralized evolution. We explain the incentives of various participating nodes in the network and propose a score-based strategy for the Lightning Autopilot system, which is responsible for automatically establishing new payment channels for the nodes joining the network. Our study demonstrates that utilizing the proposed strategy could significantly aid in reducing the network’s centralization. This strategy is grounded in qualitative labeling of network nodes based on topological and protocol features, followed by the creation of a scoring and recommendation model. Results of the experiments indicate that in the evolved network using the proposed strategy, concentration indicators such as the Gini coefficient can decrease by up to 17%, and channels ownership of the top 1% of hubs decrease by 27% compared to other autopilot strategies. Moreover, through simulated targeted attacks on hubs and channels, it is shown that by adopting the proposed strategy, the network’s resilience is increased compared to the existing autopilot strategies for evolved networks. The proposed method from this research can also be integrated into operational Lightning clients and potentially replace the current recommendation methods used in Lightning Autopilot.
{"title":"Decentralizing the lightning network: a score-based recommendation strategy for the autopilot system","authors":"Mohammad Saleh Mahdizadeh, Behnam Bahrak, Mohammad Sayad Haghighi","doi":"10.1007/s41109-023-00602-2","DOIUrl":"https://doi.org/10.1007/s41109-023-00602-2","url":null,"abstract":"Abstract The fundamental objective of the Lightning Network is to establish a decentralized platform for scaling the Bitcoin network and facilitating high-throughput micropayments. However, this network has gradually deviated from its decentralized topology since its operational inception, and its resources have quickly shifted towards centralization. The evolution of the network and the changes in its topology have been critically reviewed and criticized due to its increasing centralization. This study delves into the network’s topology and the reasons behind its centralized evolution. We explain the incentives of various participating nodes in the network and propose a score-based strategy for the Lightning Autopilot system, which is responsible for automatically establishing new payment channels for the nodes joining the network. Our study demonstrates that utilizing the proposed strategy could significantly aid in reducing the network’s centralization. This strategy is grounded in qualitative labeling of network nodes based on topological and protocol features, followed by the creation of a scoring and recommendation model. Results of the experiments indicate that in the evolved network using the proposed strategy, concentration indicators such as the Gini coefficient can decrease by up to 17%, and channels ownership of the top 1% of hubs decrease by 27% compared to other autopilot strategies. Moreover, through simulated targeted attacks on hubs and channels, it is shown that by adopting the proposed strategy, the network’s resilience is increased compared to the existing autopilot strategies for evolved networks. The proposed method from this research can also be integrated into operational Lightning clients and potentially replace the current recommendation methods used in Lightning Autopilot.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136022602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1007/s41109-023-00600-4
András London, András Pluhár
Abstract In their previous work, the authors considered the concept of random spanning tree intersection of complex networks (London and Pluhár, in: Cherifi, Mantegna, Rocha, Cherifi, Micciche (eds) Complex networks and their applications XI, Springer, Cham, 2023). A simple formula was derived for the size of the minimum expected intersection of two spanning trees chosen uniformly at random. Monte Carlo experiments were run for real networks. In this paper, we provide a broader context and motivations for the concept, discussing its game theoretic origins, examples, its applications to network optimization problems, and its potential use in quantifying the resilience and modular structure of complex networks.
{"title":"Intersection of random spanning trees in complex networks","authors":"András London, András Pluhár","doi":"10.1007/s41109-023-00600-4","DOIUrl":"https://doi.org/10.1007/s41109-023-00600-4","url":null,"abstract":"Abstract In their previous work, the authors considered the concept of random spanning tree intersection of complex networks (London and Pluhár, in: Cherifi, Mantegna, Rocha, Cherifi, Micciche (eds) Complex networks and their applications XI, Springer, Cham, 2023). A simple formula was derived for the size of the minimum expected intersection of two spanning trees chosen uniformly at random. Monte Carlo experiments were run for real networks. In this paper, we provide a broader context and motivations for the concept, discussing its game theoretic origins, examples, its applications to network optimization problems, and its potential use in quantifying the resilience and modular structure of complex networks.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1007/s41109-023-00599-8
Eszter Molnár, Dénes Csala
Abstract Industries today are tightly interconnected, necessitating a systematic perspective in understanding the complexity of relations. Employing network science, the literature constructs dense production networks to address this challenge. However, handling this high density involves carefully choosing the level of pruning to retain as much information as possible. Yet, current research lacks comprehensive insight into the extent of distortion the data removal produces in the network structure. Our paper aims to examine how this widespread thresholding method changes the production network’s topology. We do this by studying the network topology and centrality metrics under various thresholds on inter-industry networks derived from the US input-output accounts. We find that altering even minor threshold values significantly reshapes the network’s structure. Core industries serving as hubs are also affected. Hence, research using the production network framework to explain the propagation of local shocks and disturbances should also take into account that even low-value monetary transactions contribute to the interrelatedness and complexity of production networks.
{"title":"Threshold sensitivity of the production network topology","authors":"Eszter Molnár, Dénes Csala","doi":"10.1007/s41109-023-00599-8","DOIUrl":"https://doi.org/10.1007/s41109-023-00599-8","url":null,"abstract":"Abstract Industries today are tightly interconnected, necessitating a systematic perspective in understanding the complexity of relations. Employing network science, the literature constructs dense production networks to address this challenge. However, handling this high density involves carefully choosing the level of pruning to retain as much information as possible. Yet, current research lacks comprehensive insight into the extent of distortion the data removal produces in the network structure. Our paper aims to examine how this widespread thresholding method changes the production network’s topology. We do this by studying the network topology and centrality metrics under various thresholds on inter-industry networks derived from the US input-output accounts. We find that altering even minor threshold values significantly reshapes the network’s structure. Core industries serving as hubs are also affected. Hence, research using the production network framework to explain the propagation of local shocks and disturbances should also take into account that even low-value monetary transactions contribute to the interrelatedness and complexity of production networks.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135481748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-25DOI: 10.1007/s41109-023-00594-z
Eric Yanchenko, Tsuyoshi Murata, Petter Holme
Abstract Influence maximization (IM) is the task of finding the most important nodes in order to maximize the spread of influence or information on a network. This task is typically studied on static or temporal networks where the complete topology of the graph is known. In practice, however, the seed nodes must be selected before observing the future evolution of the network. In this work, we consider this realistic ex ante setting where p time steps of the network have been observed before selecting the seed nodes. Then the influence is calculated after the network continues to evolve for a total of $$T>p$$ T>p time steps. We address this problem by using statistical, non-negative matrix factorization and graph neural networks link prediction algorithms to predict the future evolution of the network, and then apply existing influence maximization algorithms on the predicted networks. Additionally, the output of the link prediction methods can be used to construct novel IM algorithms. We apply the proposed methods to eight real-world and synthetic networks to compare their performance using the susceptible-infected (SI) diffusion model. We demonstrate that it is possible to construct quality seed sets in the ex ante setting as we achieve influence spread within 87% of the optimal spread on seven of eight network. In many settings, choosing seed nodes based only historical edges provides results comparable to the results treating the future graph snapshots as known. The proposed heuristics based on the link prediction model are also some of the best-performing methods. These findings indicate that, for these eight networks under the SI model, the latent process which determines the most influential nodes may not have large temporal variation. Thus, knowing the future status of the network is not necessary to obtain good results for ex ante IM.
影响最大化(IM)是指在网络中找到最重要的节点,从而使影响或信息的传播最大化。该任务通常在静态或时态网络上进行研究,其中图的完整拓扑是已知的。然而,在实践中,在观察网络的未来演变之前,必须选择种子节点。在这项工作中,我们考虑了这种现实的事前设置,其中在选择种子节点之前已经观察了网络的p个时间步长。然后计算网络继续演化后的影响,总共为$$T>p$$ T >P个时间步长。我们通过使用统计、非负矩阵分解和图神经网络链接预测算法来预测网络的未来演变,然后将现有的影响最大化算法应用于预测的网络。此外,链路预测方法的输出可用于构建新的IM算法。我们将提出的方法应用于八个真实世界和合成网络,使用易感感染(SI)扩散模型比较它们的性能。我们证明,当我们在87内实现影响传播时,在事前设置中构建优质种子集是可能的% of the optimal spread on seven of eight network. In many settings, choosing seed nodes based only historical edges provides results comparable to the results treating the future graph snapshots as known. The proposed heuristics based on the link prediction model are also some of the best-performing methods. These findings indicate that, for these eight networks under the SI model, the latent process which determines the most influential nodes may not have large temporal variation. Thus, knowing the future status of the network is not necessary to obtain good results for ex ante IM.
{"title":"Link prediction for ex ante influence maximization on temporal networks","authors":"Eric Yanchenko, Tsuyoshi Murata, Petter Holme","doi":"10.1007/s41109-023-00594-z","DOIUrl":"https://doi.org/10.1007/s41109-023-00594-z","url":null,"abstract":"Abstract Influence maximization (IM) is the task of finding the most important nodes in order to maximize the spread of influence or information on a network. This task is typically studied on static or temporal networks where the complete topology of the graph is known. In practice, however, the seed nodes must be selected before observing the future evolution of the network. In this work, we consider this realistic ex ante setting where p time steps of the network have been observed before selecting the seed nodes. Then the influence is calculated after the network continues to evolve for a total of $$T>p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo>></mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:math> time steps. We address this problem by using statistical, non-negative matrix factorization and graph neural networks link prediction algorithms to predict the future evolution of the network, and then apply existing influence maximization algorithms on the predicted networks. Additionally, the output of the link prediction methods can be used to construct novel IM algorithms. We apply the proposed methods to eight real-world and synthetic networks to compare their performance using the susceptible-infected (SI) diffusion model. We demonstrate that it is possible to construct quality seed sets in the ex ante setting as we achieve influence spread within 87% of the optimal spread on seven of eight network. In many settings, choosing seed nodes based only historical edges provides results comparable to the results treating the future graph snapshots as known. The proposed heuristics based on the link prediction model are also some of the best-performing methods. These findings indicate that, for these eight networks under the SI model, the latent process which determines the most influential nodes may not have large temporal variation. Thus, knowing the future status of the network is not necessary to obtain good results for ex ante IM.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135860704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Network science offers valuable tools for planning and managing public transportation systems, with measures such as network centralities proposed as complementary predictors of ridership. This paper explores the relationship between different cases of passenger flows at metro stations and network centralities within both metro and alternative public transport (substitute) networks; such an association can be useful for managing metro system operations when disruptions occur. For that purpose, linear regression and non-parametric machine learning models are developed and compared. The Athens metro system is used as a testbed for developing the proposed methodology. The findings of this study can be used for deriving medium-term ridership estimates in cases of metro disruptions, as the proposed methodology can support contingency plans for both platform and rail track disruptions.
{"title":"Exploring the association between network centralities and passenger flows in metro systems","authors":"Athanasios Kopsidas, Aristeides Douvaras, Konstantinos Kepaptsoglou","doi":"10.1007/s41109-023-00583-2","DOIUrl":"https://doi.org/10.1007/s41109-023-00583-2","url":null,"abstract":"Abstract Network science offers valuable tools for planning and managing public transportation systems, with measures such as network centralities proposed as complementary predictors of ridership. This paper explores the relationship between different cases of passenger flows at metro stations and network centralities within both metro and alternative public transport (substitute) networks; such an association can be useful for managing metro system operations when disruptions occur. For that purpose, linear regression and non-parametric machine learning models are developed and compared. The Athens metro system is used as a testbed for developing the proposed methodology. The findings of this study can be used for deriving medium-term ridership estimates in cases of metro disruptions, as the proposed methodology can support contingency plans for both platform and rail track disruptions.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136060683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-20DOI: 10.1007/s41109-023-00593-0
Ana Rita Peixoto, Ana de Almeida, Nuno António, Fernando Batista, Ricardo Ribeiro, Elsa Cardoso
Abstract Social media platforms offer cost-effective digital marketing opportunities to monitor the market, create user communities, and spread positive opinions. They allow companies with fewer budgets, like startups, to achieve their goals and grow. In fact, studies found that startups with active engagement on those platforms have a higher chance of succeeding and receiving funding from venture capitalists. Our study explores how startups utilize social media platforms to foster social communities. We also aim to characterize the individuals within these communities. The findings from this study underscore the importance of social media for startups. We used network analysis and visualization techniques to investigate the communities of Portuguese IT startups through their Twitter data. For that, a social digraph has been created, and its visualization shows that each startup created a community with a degree of intersecting followers and following users. We characterized those users using user node-level measures. The results indicate that users who are followed by or follow Portuguese IT startups are of these types: “Person”, “Company,” “Blog,” “Venture Capital/Investor,” “IT Event,” “Incubators/Accelerators,” “Startup,” and “University.” Furthermore, startups follow users who post high volumes of tweets and have high popularity levels, while those who follow them have low activity and are unpopular. The attained results reveal the power of Twitter communities and offer essential insights for startups to consider when building their social media strategies. Lastly, this study proposes a methodological process for social media community analysis on platforms like Twitter.
{"title":"Unlocking the power of Twitter communities for startups","authors":"Ana Rita Peixoto, Ana de Almeida, Nuno António, Fernando Batista, Ricardo Ribeiro, Elsa Cardoso","doi":"10.1007/s41109-023-00593-0","DOIUrl":"https://doi.org/10.1007/s41109-023-00593-0","url":null,"abstract":"Abstract Social media platforms offer cost-effective digital marketing opportunities to monitor the market, create user communities, and spread positive opinions. They allow companies with fewer budgets, like startups, to achieve their goals and grow. In fact, studies found that startups with active engagement on those platforms have a higher chance of succeeding and receiving funding from venture capitalists. Our study explores how startups utilize social media platforms to foster social communities. We also aim to characterize the individuals within these communities. The findings from this study underscore the importance of social media for startups. We used network analysis and visualization techniques to investigate the communities of Portuguese IT startups through their Twitter data. For that, a social digraph has been created, and its visualization shows that each startup created a community with a degree of intersecting followers and following users. We characterized those users using user node-level measures. The results indicate that users who are followed by or follow Portuguese IT startups are of these types: “Person”, “Company,” “Blog,” “Venture Capital/Investor,” “IT Event,” “Incubators/Accelerators,” “Startup,” and “University.” Furthermore, startups follow users who post high volumes of tweets and have high popularity levels, while those who follow them have low activity and are unpopular. The attained results reveal the power of Twitter communities and offer essential insights for startups to consider when building their social media strategies. Lastly, this study proposes a methodological process for social media community analysis on platforms like Twitter.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136313778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19DOI: 10.1007/s41109-023-00590-3
Célestin Coquidé, José Lages, Dima L. Shepelyansky
Abstract During the April 2023 Brazil–China summit, the creation of a trade currency supported by the BRICS countries was proposed. Using the United Nations Comtrade database, providing the frame of the world trade network associated to 194 UN countries during the decade 2010–2020, we study a mathematical model of influence battle of three currencies, namely, the US dollar, the euro, and such a hypothetical BRICS currency. In this model, a country trade preference for one of the three currencies is determined by a multiplicative factor based on trade flows between countries and their relative weights in the global international trade. The three currency seed groups are formed by 9 eurozone countries for the euro, 5 Anglo-Saxon countries for the US dollar and the 5 BRICS countries for the new proposed currency. The countries belonging to these 3 currency seed groups trade only with their own associated currency whereas the other countries choose their preferred trade currency as a function of the trade relations with their commercial partners. The trade currency preferences of countries are determined on the basis of a Monte Carlo modeling of Ising type interactions in magnetic spin systems commonly used to model opinion formation in social networks. We adapt here these models to the world trade network analysis. The results obtained from our mathematical modeling of the structure of the global trade network show that as early as 2012 about 58% of countries would have preferred to trade with the BRICS currency, 23% with the euro and 19% with the US dollar. Our results announce favorable prospects for a dominance of the BRICS currency in international trade, if only trade relations are taken into account, whereas political and other aspects are neglected.
{"title":"Prospects of BRICS currency dominance in international trade","authors":"Célestin Coquidé, José Lages, Dima L. Shepelyansky","doi":"10.1007/s41109-023-00590-3","DOIUrl":"https://doi.org/10.1007/s41109-023-00590-3","url":null,"abstract":"Abstract During the April 2023 Brazil–China summit, the creation of a trade currency supported by the BRICS countries was proposed. Using the United Nations Comtrade database, providing the frame of the world trade network associated to 194 UN countries during the decade 2010–2020, we study a mathematical model of influence battle of three currencies, namely, the US dollar, the euro, and such a hypothetical BRICS currency. In this model, a country trade preference for one of the three currencies is determined by a multiplicative factor based on trade flows between countries and their relative weights in the global international trade. The three currency seed groups are formed by 9 eurozone countries for the euro, 5 Anglo-Saxon countries for the US dollar and the 5 BRICS countries for the new proposed currency. The countries belonging to these 3 currency seed groups trade only with their own associated currency whereas the other countries choose their preferred trade currency as a function of the trade relations with their commercial partners. The trade currency preferences of countries are determined on the basis of a Monte Carlo modeling of Ising type interactions in magnetic spin systems commonly used to model opinion formation in social networks. We adapt here these models to the world trade network analysis. The results obtained from our mathematical modeling of the structure of the global trade network show that as early as 2012 about 58% of countries would have preferred to trade with the BRICS currency, 23% with the euro and 19% with the US dollar. Our results announce favorable prospects for a dominance of the BRICS currency in international trade, if only trade relations are taken into account, whereas political and other aspects are neglected.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135014703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-18DOI: 10.1007/s41109-023-00592-1
Naw Safrin Sattar, Aydin Buluc, Khaled Z. Ibrahim, Shaikh Arifuzzaman
Abstract Dynamic (temporal) graphs are a convenient mathematical abstraction for many practical complex systems including social contacts, business transactions, and computer communications. Community discovery is an extensively used graph analysis kernel with rich literature for static graphs. However, community discovery in a dynamic setting is challenging for two specific reasons. Firstly, the notion of temporal community lacks a widely accepted formalization, and only limited work exists on understanding how communities emerge over time. Secondly, the added temporal dimension along with the sheer size of modern graph data necessitates new scalable algorithms. In this paper, we investigate how communities evolve over time based on several graph metrics under a temporal formalization. We compare six different algorithmic approaches for dynamic community detection for their quality and runtime. We identify that a vertex-centric (local) optimization method works as efficiently as the classical modularity-based methods. To its advantage, such local computation allows for the efficient design of parallel algorithms without incurring a significant parallel overhead. Based on this insight, we design a shared-memory parallel algorithm DyComPar , which demonstrates between 4 and 18 fold speed-up on a multi-core machine with 20 threads, for several real-world and synthetic graphs from different domains.
{"title":"Exploring temporal community evolution: algorithmic approaches and parallel optimization for dynamic community detection","authors":"Naw Safrin Sattar, Aydin Buluc, Khaled Z. Ibrahim, Shaikh Arifuzzaman","doi":"10.1007/s41109-023-00592-1","DOIUrl":"https://doi.org/10.1007/s41109-023-00592-1","url":null,"abstract":"Abstract Dynamic (temporal) graphs are a convenient mathematical abstraction for many practical complex systems including social contacts, business transactions, and computer communications. Community discovery is an extensively used graph analysis kernel with rich literature for static graphs. However, community discovery in a dynamic setting is challenging for two specific reasons. Firstly, the notion of temporal community lacks a widely accepted formalization, and only limited work exists on understanding how communities emerge over time. Secondly, the added temporal dimension along with the sheer size of modern graph data necessitates new scalable algorithms. In this paper, we investigate how communities evolve over time based on several graph metrics under a temporal formalization. We compare six different algorithmic approaches for dynamic community detection for their quality and runtime. We identify that a vertex-centric (local) optimization method works as efficiently as the classical modularity-based methods. To its advantage, such local computation allows for the efficient design of parallel algorithms without incurring a significant parallel overhead. Based on this insight, we design a shared-memory parallel algorithm DyComPar , which demonstrates between 4 and 18 fold speed-up on a multi-core machine with 20 threads, for several real-world and synthetic graphs from different domains.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135153405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.1007/s41109-023-00591-2
Natkamon Tovanich, Rémy Cazabet
Abstract Deanonymization is one of the major research challenges in the Bitcoin blockchain, as entities are pseudonymous and cannot be identified from the on-chain data. Various approaches exist to identify multiple addresses of the same entity, i.e., address clustering. But it is known that these approaches tend to find several clusters for the same actor. In this work, we propose to assign a fingerprint to entities based on the dynamic graph of the taint flow of money originating from them, with the idea that we could identify multiple clusters of addresses belonging to the same entity as having similar fingerprints. We experiment with different configurations to generate substructure patterns from taint flows before embedding them using representation learning models. To evaluate our method, we train classification models to identify entities from their fingerprints. Experiments show that our approach can accurately classify entities on three datasets. We compare different fingerprint strategies and show that including the temporality of transactions improves classification accuracy and that following the flow for too long impairs performance. Our work demonstrates that out-flow fingerprinting is a valid approach for recognizing multiple clusters of the same entity.
{"title":"Fingerprinting Bitcoin entities using money flow representation learning","authors":"Natkamon Tovanich, Rémy Cazabet","doi":"10.1007/s41109-023-00591-2","DOIUrl":"https://doi.org/10.1007/s41109-023-00591-2","url":null,"abstract":"Abstract Deanonymization is one of the major research challenges in the Bitcoin blockchain, as entities are pseudonymous and cannot be identified from the on-chain data. Various approaches exist to identify multiple addresses of the same entity, i.e., address clustering. But it is known that these approaches tend to find several clusters for the same actor. In this work, we propose to assign a fingerprint to entities based on the dynamic graph of the taint flow of money originating from them, with the idea that we could identify multiple clusters of addresses belonging to the same entity as having similar fingerprints. We experiment with different configurations to generate substructure patterns from taint flows before embedding them using representation learning models. To evaluate our method, we train classification models to identify entities from their fingerprints. Experiments show that our approach can accurately classify entities on three datasets. We compare different fingerprint strategies and show that including the temporality of transactions improves classification accuracy and that following the flow for too long impairs performance. Our work demonstrates that out-flow fingerprinting is a valid approach for recognizing multiple clusters of the same entity.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-08DOI: 10.1007/s41109-023-00589-w
Hendra Setiawan, Moinak Bhaduri
{"title":"Spotting the stock and crypto markets’ rings of fire: measuring change proximities among spillover dependencies within inter and intra-market asset classes","authors":"Hendra Setiawan, Moinak Bhaduri","doi":"10.1007/s41109-023-00589-w","DOIUrl":"https://doi.org/10.1007/s41109-023-00589-w","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46791251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}