Pub Date : 2023-09-20DOI: 10.1007/s41109-023-00593-0
Ana Rita Peixoto, Ana de Almeida, Nuno António, Fernando Batista, Ricardo Ribeiro, Elsa Cardoso
Abstract Social media platforms offer cost-effective digital marketing opportunities to monitor the market, create user communities, and spread positive opinions. They allow companies with fewer budgets, like startups, to achieve their goals and grow. In fact, studies found that startups with active engagement on those platforms have a higher chance of succeeding and receiving funding from venture capitalists. Our study explores how startups utilize social media platforms to foster social communities. We also aim to characterize the individuals within these communities. The findings from this study underscore the importance of social media for startups. We used network analysis and visualization techniques to investigate the communities of Portuguese IT startups through their Twitter data. For that, a social digraph has been created, and its visualization shows that each startup created a community with a degree of intersecting followers and following users. We characterized those users using user node-level measures. The results indicate that users who are followed by or follow Portuguese IT startups are of these types: “Person”, “Company,” “Blog,” “Venture Capital/Investor,” “IT Event,” “Incubators/Accelerators,” “Startup,” and “University.” Furthermore, startups follow users who post high volumes of tweets and have high popularity levels, while those who follow them have low activity and are unpopular. The attained results reveal the power of Twitter communities and offer essential insights for startups to consider when building their social media strategies. Lastly, this study proposes a methodological process for social media community analysis on platforms like Twitter.
{"title":"Unlocking the power of Twitter communities for startups","authors":"Ana Rita Peixoto, Ana de Almeida, Nuno António, Fernando Batista, Ricardo Ribeiro, Elsa Cardoso","doi":"10.1007/s41109-023-00593-0","DOIUrl":"https://doi.org/10.1007/s41109-023-00593-0","url":null,"abstract":"Abstract Social media platforms offer cost-effective digital marketing opportunities to monitor the market, create user communities, and spread positive opinions. They allow companies with fewer budgets, like startups, to achieve their goals and grow. In fact, studies found that startups with active engagement on those platforms have a higher chance of succeeding and receiving funding from venture capitalists. Our study explores how startups utilize social media platforms to foster social communities. We also aim to characterize the individuals within these communities. The findings from this study underscore the importance of social media for startups. We used network analysis and visualization techniques to investigate the communities of Portuguese IT startups through their Twitter data. For that, a social digraph has been created, and its visualization shows that each startup created a community with a degree of intersecting followers and following users. We characterized those users using user node-level measures. The results indicate that users who are followed by or follow Portuguese IT startups are of these types: “Person”, “Company,” “Blog,” “Venture Capital/Investor,” “IT Event,” “Incubators/Accelerators,” “Startup,” and “University.” Furthermore, startups follow users who post high volumes of tweets and have high popularity levels, while those who follow them have low activity and are unpopular. The attained results reveal the power of Twitter communities and offer essential insights for startups to consider when building their social media strategies. Lastly, this study proposes a methodological process for social media community analysis on platforms like Twitter.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":"177 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136313778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19DOI: 10.1007/s41109-023-00590-3
Célestin Coquidé, José Lages, Dima L. Shepelyansky
Abstract During the April 2023 Brazil–China summit, the creation of a trade currency supported by the BRICS countries was proposed. Using the United Nations Comtrade database, providing the frame of the world trade network associated to 194 UN countries during the decade 2010–2020, we study a mathematical model of influence battle of three currencies, namely, the US dollar, the euro, and such a hypothetical BRICS currency. In this model, a country trade preference for one of the three currencies is determined by a multiplicative factor based on trade flows between countries and their relative weights in the global international trade. The three currency seed groups are formed by 9 eurozone countries for the euro, 5 Anglo-Saxon countries for the US dollar and the 5 BRICS countries for the new proposed currency. The countries belonging to these 3 currency seed groups trade only with their own associated currency whereas the other countries choose their preferred trade currency as a function of the trade relations with their commercial partners. The trade currency preferences of countries are determined on the basis of a Monte Carlo modeling of Ising type interactions in magnetic spin systems commonly used to model opinion formation in social networks. We adapt here these models to the world trade network analysis. The results obtained from our mathematical modeling of the structure of the global trade network show that as early as 2012 about 58% of countries would have preferred to trade with the BRICS currency, 23% with the euro and 19% with the US dollar. Our results announce favorable prospects for a dominance of the BRICS currency in international trade, if only trade relations are taken into account, whereas political and other aspects are neglected.
{"title":"Prospects of BRICS currency dominance in international trade","authors":"Célestin Coquidé, José Lages, Dima L. Shepelyansky","doi":"10.1007/s41109-023-00590-3","DOIUrl":"https://doi.org/10.1007/s41109-023-00590-3","url":null,"abstract":"Abstract During the April 2023 Brazil–China summit, the creation of a trade currency supported by the BRICS countries was proposed. Using the United Nations Comtrade database, providing the frame of the world trade network associated to 194 UN countries during the decade 2010–2020, we study a mathematical model of influence battle of three currencies, namely, the US dollar, the euro, and such a hypothetical BRICS currency. In this model, a country trade preference for one of the three currencies is determined by a multiplicative factor based on trade flows between countries and their relative weights in the global international trade. The three currency seed groups are formed by 9 eurozone countries for the euro, 5 Anglo-Saxon countries for the US dollar and the 5 BRICS countries for the new proposed currency. The countries belonging to these 3 currency seed groups trade only with their own associated currency whereas the other countries choose their preferred trade currency as a function of the trade relations with their commercial partners. The trade currency preferences of countries are determined on the basis of a Monte Carlo modeling of Ising type interactions in magnetic spin systems commonly used to model opinion formation in social networks. We adapt here these models to the world trade network analysis. The results obtained from our mathematical modeling of the structure of the global trade network show that as early as 2012 about 58% of countries would have preferred to trade with the BRICS currency, 23% with the euro and 19% with the US dollar. Our results announce favorable prospects for a dominance of the BRICS currency in international trade, if only trade relations are taken into account, whereas political and other aspects are neglected.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135014703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-18DOI: 10.1007/s41109-023-00592-1
Naw Safrin Sattar, Aydin Buluc, Khaled Z. Ibrahim, Shaikh Arifuzzaman
Abstract Dynamic (temporal) graphs are a convenient mathematical abstraction for many practical complex systems including social contacts, business transactions, and computer communications. Community discovery is an extensively used graph analysis kernel with rich literature for static graphs. However, community discovery in a dynamic setting is challenging for two specific reasons. Firstly, the notion of temporal community lacks a widely accepted formalization, and only limited work exists on understanding how communities emerge over time. Secondly, the added temporal dimension along with the sheer size of modern graph data necessitates new scalable algorithms. In this paper, we investigate how communities evolve over time based on several graph metrics under a temporal formalization. We compare six different algorithmic approaches for dynamic community detection for their quality and runtime. We identify that a vertex-centric (local) optimization method works as efficiently as the classical modularity-based methods. To its advantage, such local computation allows for the efficient design of parallel algorithms without incurring a significant parallel overhead. Based on this insight, we design a shared-memory parallel algorithm DyComPar , which demonstrates between 4 and 18 fold speed-up on a multi-core machine with 20 threads, for several real-world and synthetic graphs from different domains.
{"title":"Exploring temporal community evolution: algorithmic approaches and parallel optimization for dynamic community detection","authors":"Naw Safrin Sattar, Aydin Buluc, Khaled Z. Ibrahim, Shaikh Arifuzzaman","doi":"10.1007/s41109-023-00592-1","DOIUrl":"https://doi.org/10.1007/s41109-023-00592-1","url":null,"abstract":"Abstract Dynamic (temporal) graphs are a convenient mathematical abstraction for many practical complex systems including social contacts, business transactions, and computer communications. Community discovery is an extensively used graph analysis kernel with rich literature for static graphs. However, community discovery in a dynamic setting is challenging for two specific reasons. Firstly, the notion of temporal community lacks a widely accepted formalization, and only limited work exists on understanding how communities emerge over time. Secondly, the added temporal dimension along with the sheer size of modern graph data necessitates new scalable algorithms. In this paper, we investigate how communities evolve over time based on several graph metrics under a temporal formalization. We compare six different algorithmic approaches for dynamic community detection for their quality and runtime. We identify that a vertex-centric (local) optimization method works as efficiently as the classical modularity-based methods. To its advantage, such local computation allows for the efficient design of parallel algorithms without incurring a significant parallel overhead. Based on this insight, we design a shared-memory parallel algorithm DyComPar , which demonstrates between 4 and 18 fold speed-up on a multi-core machine with 20 threads, for several real-world and synthetic graphs from different domains.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135153405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.1007/s41109-023-00591-2
Natkamon Tovanich, Rémy Cazabet
Abstract Deanonymization is one of the major research challenges in the Bitcoin blockchain, as entities are pseudonymous and cannot be identified from the on-chain data. Various approaches exist to identify multiple addresses of the same entity, i.e., address clustering. But it is known that these approaches tend to find several clusters for the same actor. In this work, we propose to assign a fingerprint to entities based on the dynamic graph of the taint flow of money originating from them, with the idea that we could identify multiple clusters of addresses belonging to the same entity as having similar fingerprints. We experiment with different configurations to generate substructure patterns from taint flows before embedding them using representation learning models. To evaluate our method, we train classification models to identify entities from their fingerprints. Experiments show that our approach can accurately classify entities on three datasets. We compare different fingerprint strategies and show that including the temporality of transactions improves classification accuracy and that following the flow for too long impairs performance. Our work demonstrates that out-flow fingerprinting is a valid approach for recognizing multiple clusters of the same entity.
{"title":"Fingerprinting Bitcoin entities using money flow representation learning","authors":"Natkamon Tovanich, Rémy Cazabet","doi":"10.1007/s41109-023-00591-2","DOIUrl":"https://doi.org/10.1007/s41109-023-00591-2","url":null,"abstract":"Abstract Deanonymization is one of the major research challenges in the Bitcoin blockchain, as entities are pseudonymous and cannot be identified from the on-chain data. Various approaches exist to identify multiple addresses of the same entity, i.e., address clustering. But it is known that these approaches tend to find several clusters for the same actor. In this work, we propose to assign a fingerprint to entities based on the dynamic graph of the taint flow of money originating from them, with the idea that we could identify multiple clusters of addresses belonging to the same entity as having similar fingerprints. We experiment with different configurations to generate substructure patterns from taint flows before embedding them using representation learning models. To evaluate our method, we train classification models to identify entities from their fingerprints. Experiments show that our approach can accurately classify entities on three datasets. We compare different fingerprint strategies and show that including the temporality of transactions improves classification accuracy and that following the flow for too long impairs performance. Our work demonstrates that out-flow fingerprinting is a valid approach for recognizing multiple clusters of the same entity.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-08DOI: 10.1007/s41109-023-00589-w
Hendra Setiawan, Moinak Bhaduri
{"title":"Spotting the stock and crypto markets’ rings of fire: measuring change proximities among spillover dependencies within inter and intra-market asset classes","authors":"Hendra Setiawan, Moinak Bhaduri","doi":"10.1007/s41109-023-00589-w","DOIUrl":"https://doi.org/10.1007/s41109-023-00589-w","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46791251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06DOI: 10.1007/s41109-023-00585-0
Hsiao-Hui Chen, Udo Dietrich
{"title":"Normalized closeness centrality of urban networks: impact of the location of the catchment area and evaluation based on an idealized network","authors":"Hsiao-Hui Chen, Udo Dietrich","doi":"10.1007/s41109-023-00585-0","DOIUrl":"https://doi.org/10.1007/s41109-023-00585-0","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42778329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.1007/s41109-023-00584-1
Giorgio Fagiolo, Davide Samuele Luzzati
{"title":"Centrality in the macroeconomic multi-network explains the spatiotemporal distribution of country per-capita income","authors":"Giorgio Fagiolo, Davide Samuele Luzzati","doi":"10.1007/s41109-023-00584-1","DOIUrl":"https://doi.org/10.1007/s41109-023-00584-1","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44235744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.1007/s41109-023-00579-y
Yitzchak Novick, A. Bar-Noy
{"title":"Inclusive random sampling in graphs and networks","authors":"Yitzchak Novick, A. Bar-Noy","doi":"10.1007/s41109-023-00579-y","DOIUrl":"https://doi.org/10.1007/s41109-023-00579-y","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45362250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.1007/s41109-023-00586-z
M. T. Kurbucz, András Sugár, Tibor Keresztély
{"title":"Analysis of the international trade networks of COVID-19 medical products","authors":"M. T. Kurbucz, András Sugár, Tibor Keresztély","doi":"10.1007/s41109-023-00586-z","DOIUrl":"https://doi.org/10.1007/s41109-023-00586-z","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42813672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.1007/s41109-023-00582-3
Ondrej Janca, Eliska Ochodkova, Eva Kriegová, Pavel Horak, M. Skacelova, Milos Kudelka
{"title":"Real-world data in rheumatoid arthritis: patient similarity networks as a tool for clinical evaluation of disease activity","authors":"Ondrej Janca, Eliska Ochodkova, Eva Kriegová, Pavel Horak, M. Skacelova, Milos Kudelka","doi":"10.1007/s41109-023-00582-3","DOIUrl":"https://doi.org/10.1007/s41109-023-00582-3","url":null,"abstract":"","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49315430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}