{"title":"Structural Characterization and Synthesis of ZnO / TiO2 Nano Composites","authors":"","doi":"10.18576/ijtfst/100307","DOIUrl":"https://doi.org/10.18576/ijtfst/100307","url":null,"abstract":"","PeriodicalId":37038,"journal":{"name":"International Journal of Thin Film Science and Technology","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80798364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nanostructured thin films have good physical properties, and could be used in the various applications such as capacitor, photo detector, ultra violet opto electronics, light emitting diode, photonic integrated circuit and solar cell applications. The successive ionic layer adsorption and reaction (SILAR) method is one of the common chemical deposition techniques. This method has many advantages such as the simplest & the cheapest method, and required low temperature deposition process. This is the first time, preparation of cobalt selenide thin films onto soda lime glass slide at room temperature in the presence of various complexing agents (ammonia, triethanolamine and ethylenediaminetetraacetic acid disodium salt). Characterization of thin films was carried by using x-ray diffraction, atomic force microscopy and UV-visible spectrophotometer. AFM analysis showed that the cobalt selenide thin films prepared in the presence of ammonia exhibited uniform and completely covered the entire surface area of substrate. XRD data confirmed that obtained thin films (using ammonia and triethanolamine) were polycrystalline with well-developed phases. Optical properties indicated the band gap values of all films were in the range of 1.8 to 2 eV, suitable to be used in solar cell applications.
{"title":"The Influence of Different Complexing Agents on the Properties of SILAR-Deposited Cobalt Selenide Thin Films","authors":"H. Soonmin","doi":"10.18576/ijtfst/100310","DOIUrl":"https://doi.org/10.18576/ijtfst/100310","url":null,"abstract":"The nanostructured thin films have good physical properties, and could be used in the various applications such as capacitor, photo detector, ultra violet opto electronics, light emitting diode, photonic integrated circuit and solar cell applications. The successive ionic layer adsorption and reaction (SILAR) method is one of the common chemical deposition techniques. This method has many advantages such as the simplest & the cheapest method, and required low temperature deposition process. This is the first time, preparation of cobalt selenide thin films onto soda lime glass slide at room temperature in the presence of various complexing agents (ammonia, triethanolamine and ethylenediaminetetraacetic acid disodium salt). Characterization of thin films was carried by using x-ray diffraction, atomic force microscopy and UV-visible spectrophotometer. AFM analysis showed that the cobalt selenide thin films prepared in the presence of ammonia exhibited uniform and completely covered the entire surface area of substrate. XRD data confirmed that obtained thin films (using ammonia and triethanolamine) were polycrystalline with well-developed phases. Optical properties indicated the band gap values of all films were in the range of 1.8 to 2 eV, suitable to be used in solar cell applications.","PeriodicalId":37038,"journal":{"name":"International Journal of Thin Film Science and Technology","volume":"33 1-2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78177710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient and Recyclable Cu Incorporated TiO2 Nanoparticle Catalyst for Organic Dye Photodegradation","authors":"","doi":"10.18576/ijtfst/100306","DOIUrl":"https://doi.org/10.18576/ijtfst/100306","url":null,"abstract":"","PeriodicalId":37038,"journal":{"name":"International Journal of Thin Film Science and Technology","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80879823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studying The Effect of The Dielectric Barrier Discharge Non- thermal Plasma on Colon Cancer Cell line","authors":"","doi":"10.18576/ijtfst/100305","DOIUrl":"https://doi.org/10.18576/ijtfst/100305","url":null,"abstract":"","PeriodicalId":37038,"journal":{"name":"International Journal of Thin Film Science and Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77928612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capacitance-voltage measurements of hetero-layer OLEDs treated by an electric field and thermal annealing","authors":"","doi":"10.18576/ijtfst/100311","DOIUrl":"https://doi.org/10.18576/ijtfst/100311","url":null,"abstract":"","PeriodicalId":37038,"journal":{"name":"International Journal of Thin Film Science and Technology","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87044338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applying Optical Swanepoels Model to Assess the Effect of UV-Irradiated Time on Optical Properties of ZnSe Thick Film","authors":"","doi":"10.18576/ijtfst/100302","DOIUrl":"https://doi.org/10.18576/ijtfst/100302","url":null,"abstract":"","PeriodicalId":37038,"journal":{"name":"International Journal of Thin Film Science and Technology","volume":"248 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76284670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characteristics of Micro and Nano Composite from Marble and Granite Wastes","authors":"","doi":"10.18576/ijtfst/100304","DOIUrl":"https://doi.org/10.18576/ijtfst/100304","url":null,"abstract":"","PeriodicalId":37038,"journal":{"name":"International Journal of Thin Film Science and Technology","volume":"198 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79976738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resistivity of Bilayers Ni/Pd Films and Ni1-xPdx Alloys Films","authors":"","doi":"10.18576/ijtfst/100111","DOIUrl":"https://doi.org/10.18576/ijtfst/100111","url":null,"abstract":"","PeriodicalId":37038,"journal":{"name":"International Journal of Thin Film Science and Technology","volume":"16 4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78080964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}